2,153
Views
20
CrossRef citations to date
0
Altmetric
Review Articles

Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth

&
Pages 1-13 | Received 10 Jul 2011, Accepted 26 Jul 2011, Published online: 20 Jan 2017

Literature cited

  • AbbottLKRobsonADde BoerG. 1984. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol 97:437–446, 10.1111/j.1469-8137.1984.tb03609.x
  • AkiyamaKHayashiH. 2006. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931, 10.1093/aob/mcl063
  • AsghariHRCavagnaroTR. 2011. Arbuscular mycorrhizas enhance plant interception of leached nutrients. Funct Plant Biol 38:219–226, 10.1071/FP10180
  • AsghariHRChittleboroughDJSmithFASmithSE. 2005. Influence of arbuscular mycorrhizal (AM) symbiosis on phosphorus leaching through soil cores. Plant Soil 275: 181–193, 10.1007/s11104-005-1328-2
  • BaylisGTS. 1972. Fungi, phosphorus and the evolution of root systems. Search 3:257–258.
  • BeverJDSchultzPAPringleAMortonJB. 2001. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51:923–931, 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2
  • BolanNSRobsonABarrowNJAylemoreLAG. 1984a. Specific activity of phosphorus in mycorrhizal and non-mycorrhizal plants in relation to the availability of phosphorus to plants. Soil Biol Biochem 16:299–304, 10.1016/0038-0717(84)90023-3
  • BolanNSRobsonABarrowNJ. 1984b. Increasing phosphorus supply can increase the infection of plant roots by vesicular arbuscular mycorrhizal fungi. Soil Biol Biochem 16:419–420, 10.1016/0038-0717(84)90043-9
  • BolanNSRobsonABarrowNJ. 1987. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99:401–410, 10.1007/BF02370885
  • BonfantePGenreA. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48, 10.1038/ncomms1046
  • BranscheidASiehDPantBDMayPDeversEAet al. 2010. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant-Microbe Interact 23:915–926, 10.1094/MPMI-23-7-0915
  • BucherM. 2007. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26, 10.1111/j.1469-8137.2006.01935.x
  • CavagnaroTRGaoL-LSmithFASmithSE. 2001. Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytol 151: 469–475, 10.1046/j.0028-646x.2001.00191.x
  • CavagnaroTRSmithFAAylingSMSmithSE. 2003. Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytol 157:127–134, 10.1046/j.1469-8137.2003.00654.x
  • CavagnaroTRSmithFAHayGCarne-CavagnaroVLSmithSE. 2004. Inoculum type does not affect overall resistance of an arbuscular mycorrhiza-defective tomato mutant to colonization but inoculation does change competitive interactions with wild-type tomato. New Phytol 161: 485–494, 10.1111/j.1469-8137.2004.00967.x
  • ChaudhuriBHormannFLalondeSBradySMOrlandoDAet al. 2008. Protonophore-and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J 56:948–962, 10.1111/j.1365-313X.2008.03652.x
  • ChenL-QHouB-HLalondeSTakanagaHHartungMet al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–534, 10.1038/nature09606
  • ChiouT-JLinS-I. 2011. Signaling network in sensing phosphate availability in plants. Ann Rev Plant Biol 62: 185–206.
  • ChristophersenHMSmithFASmithSE. 2009. Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via downregulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol 184: 962–974, 10.1111/j.1469-8137.2009.03009.x
  • DicksonS. 2004. The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163:187–200, 10.1111/j.1469-8137.2004.01095.x
  • DrewEAMurrayRSSmithSE. 2006. Functional diversity of external hyphae of AM fungi: ability to colonize new hosts is influenced by fungal species, distance and soil conditions. Appl Soil Ecol 32:350–365, 10.1016/j.apsoil.2005.07.005
  • DrewEAMurrayRSSmithSEJakobsenI. 2003. Beyond the rhizosphere: growth and function of arbuscular mycorrhizal external hyphae in sands of varying pore sizes. Plant Soil 251: 105–114, 10.1023/A:1022932414788
  • FacelliESmithSEFacelliJMChristophersenHMSmithFA. 2010. Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185:1050–1061, 10.1111/j.1469-8137.2009.03162.x
  • FitterAH. 2006. What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6, 10.1111/j.1469-8137.2006.01861.x
  • GallaudI. 1905. Études sur les mycorrhizes endotrophes. Rev Gén Bot 17:5–48, 66–83, 123–135, 223–239, 313–325, 425–433, 479–500.
  • GaoL-LDelpGSmithSE. 2001. Colonization patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytol 151:477–491, 10.1046/j.0028-646x.2001.00193.x
  • GenreABonfanteP. 2007. Check-in procedures for plant cell entry by biotrophic microbes. Mol Plant-Microbe Interact 20:1023–1030, 10.1094/MPMI-20-9-1023
  • GenreAChabaudMFaccioABarkerDGBonfanteP. 2008. Prepenetration apparatus asssembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortext of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420, 10.1105/tpc.108.059014
  • GenreAChabaudMTimmersTBonfantePBarkerDG. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499, 10.1105/tpc.105.035410
  • Gianinazzi-PearsonVSmithSEGianinazziSSmithFA. 1991. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolyzing enzyme activities in plant-fungus interfaces? New Phytol 117:61–74, 10.1111/j.1469-8137.1991.tb00945.x
  • GovindarajuluMPfefferPJinHAbubakerJDoudsDet al. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823, 10.1038/nature03610
  • GraceEJCotsaftisOTesterMSmithFASmithSE. 2009a. Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949, 10.1111/j.1469-8137.2008.02720.x
  • GraceEJSmithFASmithSE. 2009b. Deciphering the arbuscular mycorrhizal pathway of P uptake in nonresponsive host plant species. In: Azcón-AguilarCBareaJMGianinazziSGianinazzi-PearsonV, eds. Mycorrhizas—functional processes and ecological impact. Berlin: Springer. p 89–106.
  • GuMXuKChenAZhuYTangGet al. 2010. Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiol Plant 138:226–237, 10.1111/j.1399-3054.2009.01320.x
  • HammondJPWhitePJ. 2008. Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109, 10.1093/jxb/erm221
  • HarleyJLSmithSE. 1983. Mycorrhizal symbiosis. London: Academic Press. 483 p.
  • HarrisonMJ. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Ann Rev Microbiol 59:19–42, 10.1146/annurev.micro.58.030603.123749
  • HelgasonTFitterAH. 2009. Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480, 10.1093/jxb/erp144
  • HetrickBADWilsonGWTCoxTS. 1993a. Mycorrhizal dependence of modern wheat varieties and ancestors. Can J Bot 70:2032–2040, 10.1139/b92-253
  • HetrickBADWilsonGWTCoxTS. 1993b. Mycorrhizal dependance of modern wheat cultivars and ancestors: a synthesis. Can J Bot 71:512–518, 10.1139/b93-056
  • HocherVAlloisioNAuguyFFournierPDoumasPet al. 2011. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol 156:700–711, 10.1104/pp.111.174151
  • JakobsenI. 1999. Transport of phosphorus and carbon in arbuscular mycorrhizas. In: VarmaAHockB, eds. Mycorrhiza: structure, function, molecular biology and biotechnology. Berlin: Springer. p 309–332.
  • JakobsenIAbbottLKRobsonAD. 1992a. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380, 10.1111/j.1469-8137.1992.tb01077.x
  • JakobsenIAbbottLKRobsonAD. 1992b. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 2. Hyphal transport of 32P over defined distances. New Phytol 120: 509–516, 10.1111/j.1469-8137.1992.tb01800.x
  • JakobsenISmithSESmithFA. 2002. Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der HeijdenMGASandersIR, eds. Mycorrhizal ecology. Berlin, Heidelberg: Springer-Verlag, 157:75–92.
  • JansaJMozafarAFrossardE. 2003. Long-distance transport of P and Zn through the hyphae of an arbuscular mycorrhizal fungus in symbiosis with maize. Agronomie 23:481–488, 10.1051/agro:2003013
  • JansaJSmithFASmithSE. 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi. New Phytol 177: 779–789, 10.1111/j.1469-8137.2007.02294.x
  • JavotHPumplinNHarrisonMJ. 2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322, 10.1111/j.1365-3040.2006.01617.x
  • JinHPfefferPDoudsDPiotrowskiELammersPet al. 2005. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696, 10.1111/j.1469-8137.2005.01536.x
  • JohnsonNC. 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas accross scales. New Phytol 185:631–647, 10.1111/j.1469-8137.2009.03110.x
  • JohnsonNCGrahamJHSmithFA. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–586, 10.1046/j.1469-8137.1997.00729.x
  • JonerEJvan AarleIMVosatkaM. 2000. Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199–210, 10.1023/A:1026582207192
  • KarandashovVNagyRWegmüllerSAmrheinNBucherM. 2004. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 101:6285–6290, 10.1073/pnas.0306074101
  • KiersETvan der HeijdenMGA. 2006. Mutualistic stability in the arbuscular mycorrhizal symbiosis: exploring hypotheses of evolutionary cooperation. Ecology 87:1627–1636, 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2
  • KlironomosJN. 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301, 10.1890/02-0413
  • KubotaMMcGonigleTPHyakumachiM. 2005. Co-occurrence of Arum- and Paris-type morphologies of arbuscular mycorrhizae in cucumber and tomato. Mycorrhiza 15:73–77, 10.1007/s00572-004-0299-0
  • LambersHRavenJAShaverGSmithSE. 2008. Plant nutrient acquisiton strategies change with soil age. Trends Ecol Evol 23:95–103, 10.1016/j.tree.2007.10.008
  • LiHYSmithFADicksonSHollowayRESmithSE. 2008a. Plant growth depressions in arbuscular mycorrhizal symbiosis: not just caused by carbon drain? New Phytol 178:852–862, 10.1111/j.1469-8137.2008.02410.x
  • LiHYSmithSEOphel-KellerKHollowayRESmithFA. 2008b. Naturally occurring arbuscular mycorrhizal fungi can replace direct P uptake by wheat when roots cannot access added P fertilizer. Funct Plant Biol 35: 125–134.
  • MailletFPoinsotOPouch-PagesAVHaouyAGueunierMet al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63, 10.1038/nature09622
  • ManjarrezMChristophersenHMSmithSESmithFA. 2010. Cortical colonization is not an absolute requirement for phosphorus transfer to plants in arbuscular mycorrhizas formed by Scutellospora calospora in a tomato mutant: evidence from physiology and gene expression. Fuct Plant Biol 37:1132–1142, 10.1071/FP09248
  • ManjarrezMWallworkMSmithSESmithFADicksonS. 2009. Different arbuscular mycorrhizal fungi induce differences in cellular responses and fungal activity in a mycorrhiza-defective mutant of tomato (rmc). Funct Plant Biol 36:86–96, 10.1071/FP08032
  • MillerRMJastrowJD. 2002. Mycorrhizal influence on soil structure. In: KapulnikYDoudsDD, eds. Arbuscular mycorrhizae: molecular biology and physiology. Dordrecht, the Netherlands: Kluwer Academic Publishers. p 3–18.
  • MunkvoldLKjøllerRVestbergMRosendahlSJakobsenI. 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364, 10.1111/j.1469-8137.2004.01169.x
  • OldroydGEDHarrisonMJUdvardiM. 2005. Peace talks and trade deals. Keys to long-term harmony in legume-microbe symbioses. Plant Physiol 137:1205–1210, 10.1104/pp.104.057661
  • OlssonPAJakobsenIWallanderH. 2002. Foraging and resource allocation strategies of mycorrhizal fungi in a patchy environment. In: van der HeijdenMGASandersIR, eds. Mycorrhizal ecology. Berlin, Heidelberg: Springer Verlag. p 93–115.
  • ÖpikMMooraMLiiraJZobelM. 2006. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790, 10.1111/j.1365-2745.2006.01136.x
  • ParniskeM. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775, 10.1038/nrmicro1987
  • PearsonJNJakobsenI. 1993. Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481–488, 10.1111/j.1469-8137.1993.tb03839.x
  • PoulsenKHNagyRGaoLLSmithSEBucherMet al. 2005. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–453, 10.1111/j.1469-8137.2005.01523.x
  • RavnskovSJakobsenI. 1995. Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618, 10.1111/j.1469-8137.1995.tb03029.x
  • SchachtmanDPReidRJAylingSM. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol 116: 447–453, 10.1104/pp.116.2.447
  • SchüßlerAMartinHCohenDFitzMWipfD. 2006. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936, 10.1038/nature05364
  • SchüßlerASchwarzottDWalkerC. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105 : 1413 – 1421, 10.1017/S0953756201005196
  • Shachar-HillYPfefferPEDoudsDOsmanSFDonerLWet al. 1995. Partioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15.
  • SmithFADicksonSMorrisCReidRJTesterMet al. 1995. Phosphate transfer in VA mycorrhizas. Special mechanisms or not? In: BaluskaFCiamporováMGasparíkováOBarlowPW, eds. Structure and function of roots. Dordrecht, the Netherlands: Kluwer Academic Publishers. p 155–161.
  • SmithFAGraceEJSmithSE. 2009. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358, 10.1111/j.1469-8137.2008.02753.x
  • SmithFAJakobsenISmithSE. 2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 147:357–366, 10.1046/j.1469-8137.2000.00695.x
  • SmithFASmithSE. 1981. Mycorrhizal infection and growth of Trifolium subterraneum: comparison of natural and artificial inocula. New Phytol 88:311–325, 10.1111/j.1469-8137.1981.tb01727.x
  • SmithFASmithSE. 1996. Mutualism and parasitism: diversity in function and structure in the “arbuscular” (VA) mycorrhizal symbiosis. Adv Bot Res 22: 1–43, 10.1016/S0065-2296(08)60055-5
  • SmithFASmithSE. 2011b. What is the significance of the arbuscular mycorrhizal colonization of many economically important crop plants? Plant Soil. (In press).
  • SmithSE. 1980. Mycorrhizas of autotrophic higher plants. Biol Rev 55:475–510, 10.1111/j.1469-185X.1980.tb00701.x
  • SmithSEChristophersenHMPopeSSmithFA. 2010. Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327: 1–21, 10.1007/s11104-009-0089-8
  • SmithSEDicksonSMorrisCSmithFA. 1994. Transport of phosphate from fungus to plant in VA mycorrhizas: calculation of the area of symbiotic interface and of fluxes of P from two different fungi to Allium porrum L. New Phytol 127:93–99, 10.1111/j.1469-8137.1994.tb04262.x
  • SmithSEJakobsenIGrønlundMSmithFA. 2011. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156. (In press).
  • SmithSEReadDJ. 2008. Mycorrhizal symbiosis. New York: Academic Press. 800 p.
  • SmithSESmithFA. 1990. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38, 10.1111/j.1469-8137.1990.tb00370.x
  • SmithSESmithFA. 2011a. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosytems scales. Ann Rev Plant Biol 62: 227–250, 10.1146/annurev-arplant-042110-103846
  • SmithSESmithFAJakobsenI. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524, 10.1111/j.1469-8137.2004.01039.x
  • TawarayaK. 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668.
  • TinkerPB. 1975a. Effects of vesicular-arbuscular mycorrhizas on higher plants. Symp Soc Exp Biol 29:325–349.
  • TinkerPB. 1975b. Soil chemistry of phosphorus and mycorrhizal effects on plant growth. In: SandersFEMosseBTinkerPB, eds. Endomycorrhizas. London: Academic Press. p 353–371.
  • TinkerPBHNyePH. 2000. Solute movement in the rhizosphere. Oxford, UK: Oxford Univ Press. 464 p.
  • van der HeijdenMGA. 2010. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology 91:1163–1171, 10.1890/09-0336.1
  • WilsonGWTHartnettDC. 1998. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738, 10.2307/2446507
  • ZhuYGMillerRM. 2003. Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. Trends Plant Sci 8:407–409, 10.1016/S1360-1385(03)00184-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.