160
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Genome-wide in silico identification of GPI proteins in Mycosphaerella fijiensis and transcriptional analysis of two GPI-anchored β-1,3-glucanosyltransferases

, , , , , , , , & show all
Pages 285-296 | Received 29 Mar 2012, Accepted 31 Jul 2012, Published online: 20 Jan 2017

Literature cited

  • AranaDMPrietoDRománENombelaCAlonso-MongeRPlaJ. 2009. The role of the cell wall in fungal pathogenesis. Microb Biotechnol 2:308–320, 10.1111/j.1751-7915.2008.00070.x
  • ArzanlouMAbelnEKemaGWaalwijkCCarlierJde VriesIGuzmánMCrousPW. 2007. Molecular diagnostics for the Sigatoka disease complex of banana. Phytopathology 97:1112–1118, 10.1094/PHYTO-97-9-1112
  • BendtsenJDNielsenHvon HeijneGBrunakS. 2004. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 40:783–795, 10.1016/j.jmb.2004.05.028
  • BrulSKingAvan der VaartJMChapmanJKlisFVerripsCT. 1997. The incorporation of mannoproteins in the cell wall of S. cerevisiae and filamentous Ascomycetes. Antonie van Leeuwenhoek 72:229–237, 10.1023/A:1000429208049
  • CalderonJZavrelMRagniEFonziWARuppSPopoloL. 2010. PHR1, a pH-regulated gene of Candida albicans encoding a glucan-remodeling enzyme, is required for adhesion and invasion. Microbiol 156:2484–2494, 10.1099/mic.0.038000-0
  • CaracuelZMartínez-RochaADi PietroAMadridMRonceroMI. 2005. Fusarium oxysporum Gas1 encodes a putative β-1,3-glucanosyltransferase required for virulence on tomato plants. MPMI 18:1140–1147, 10.1094/MPMI-18-1140
  • CarottiCRagniEPalomaresOFontaineTTedeschiGRodríguezRLatgéJPVaiMPopoloL. 2004. Characterization of recombinant forms of the yeast Gas1 protein and identification of residues essential for glucanosyltransferase activity and folding. Eur J Biochem 271:3635–3645, 10.1111/j.1432-1033.2004.04297.x
  • Carrillo-MuñozAJGiusianoGEzkurraPAQuindósG. 2006. Antifungal agents: mode of action in yeast cells. Rev Esp Quimioterap 19:130–139.
  • CastroNAlvesZPereiraMAlmeidaC. 2005. Screening for glycosylphosphatidylinositol-anchored proteins in the Paracoccidioides brasiliensis transcriptome. Genet Mol Res 4:326–345.
  • CastroNde CastroKPOrlandiIFeitosaLdosSRosa e SilvaLKVainsteinMHBáoSNVaiMSoaresCM. 2009. Characterization and functional analysis of the β-1,3-glucanosyltransferase 3 of the human pathogenic fungus Paracoccidioides brasiliensis. FEMS Yeast Res 9: 103–114, 10.1111/j.1567-1364.2008.00463.x
  • ChurchillA. 2010. Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress toward understanding pathogen biology and detection, disease development and the challenges of control. Mol Plant Pathol 12: 307–28, 10.1111/j.1364-3703.2010.00672.x
  • CondeLGrijalva-ArangoRJames-KayA. 2008. A rapid DNA extraction method from mycelium which is suitable for PCR. Rev Latinoam Microbiol 50:86–88.
  • CondeLWaalwijkCCanto-CanchéBKemaGCrousPWJamesACAbelnEC. 2007. Isolation and characterization of the mating type locus of Mycosphaerella fijiensis, the causal agent of black leaf streak disease of banana. Mol Plant Pathol 8:111–120, 10.1111/j.1364-3703.2006.00376.x
  • Couoh-UicabYIslas-FloresIKantún-MorenoNZwiersLTzec-SimáMPeraza-EcheverríaSBrito-ArgáezLPeraza-EcheverríaLGrijalva-ArangoRJamesARodrí-guez-GarcíaCCanto-CanchéB. 2012. Cloning, in silico structural characterization and expression analysis of MfAtr4, an ABC transporter from the banana pathogen Mycosphaerella fijiensis. Afr J Biotechnol 11:54–79.
  • EisenhaberBSchneiderGWildpanerMEisenhaberF. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequence and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora Crassa, Sacharomyces cerevisiae and Schizosacharomyces pombe. J Mol Biol 337:243–253, 10.1016/j.jmb.2004.01.025
  • EmanuelssonONielsenHBrunakSvon HeijneG. 2000. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005–1016, 10.1006/jmbi.2000.3903
  • FankhauserNMäserP. 2005. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 21:1846–1852, 10.1093/bioinformatics/bti299
  • FouréE. 1985. Black leaf streak disease of bananas and plantains (Mycosphaerella fijiensis Morelet). Study of the symptoms and stages of the disease in Gabon. Paris: CIRAD-IRFA. 20 p.
  • GasteboisAFontaineTLatgéJPMouynaI. 2010. β-(1–3) glucanosyltransferase Gel4p is essential for Aspergillus fumigatus. Eukaryot Cell 9:1294–1298, 10.1128/EC.00107-10
  • GattiEPopoloLVaiMRotaNAlberghinaL. 1994. Linked oligosaccharides in yeast glycosyl phosphatidylinositol-anchored protein gp115 are clustered in a serine-rich region not essential for its function. J Biol Chem 269:19695–19700.
  • GomiMAkazawaFMitakuS. 2000. SOSUIsignal: software system for prediction of signal peptide and membrane protein. Genome Informatics 11:414–415.
  • HortonPParkKJObayashiTFujitaNHaradaHAdams-CollierCJNakaiK. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587, 10.1093/nar/gkm259
  • Islas-FloresIPeraza-EcheverríaLCanto-CanchéBRodríguez-GarcíaC. 2006. Extraction of high-quality, melanin free RNA from Mycosphaerella fijiensis for cDNA preparation. Mol Biotechnol 34:45–50, 10.1385/MB:34:1:45
  • KeonJAntoniwJCarzanigaRDellerSWardJLBakerJMBealeMHHammond-KosackKRuddJJ. 2007. Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. Mol Plant Microbe Interact 20:178–193, 10.1094/MPMI-20-2-0178
  • KitagakiHWuHShimoiHItoK. 2002. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol Microbiol 46:1011–1022, 10.1046/j.1365-2958.2002.03244.x
  • KlisFMGrazynaSJde GrootPWBrulS. 2009. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9:1013–28, 10.1111/j.1567-1364.2009.00541.x
  • LatgéJP. 2007. The cell wall: a carbohydrate armor for fungal cell. Mol Microbiol 66:279–290, 10.1111/j.1365-2958.2007.05872.x
  • LatgéJPMouynaITekaiaFBeauvaisADebeaupuisJPNiermanW. 2005. Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. Med Mycol 43: S15–22, 10.1080/13693780400029155
  • LeeSLeeBJangIKimSBhakJ. 2006. Localizome: a server for identifying transmembrane topologies and TM helices of eukaryotic proteins utilizing domain. Nucleic Acids Res 34:W99–W103, 10.1093/nar/gkl351
  • LetunicIDoerksTBorkP. 2008. SMART 6: recent updates and new developments. Nucleic Acids Res 37:D229–D232, 10.1093/nar/gkn808
  • LiHZhouHLuoYOuyangHHuHJinC. 2007. Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol 64:1014–1027, 10.1111/j.1365-2958.2007.05709.x
  • LivakKJSchmittgenTD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408, 10.1006/meth.2001.1262
  • MazáňMRagniEPopoloLFarkašV. 2011. Catalytic properties of the Gas family β-(1,3)-glucanosyltransferases active in fungal cell-wall biogenesis as determined by a novel fluorescent assay. Biochem J 438:275–82, 10.1042/BJ20110405
  • MouynaIMorelleWVaiMMonodMLéchenneBFontaineTBeauvaisASarfatiJPrévostMHenryCLatgéJP. 2005. Deletion of GEL2 encoding for a β-(1,3) glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol Microbiol 56: 1675–1688, 10.1111/j.1365-2958.2005.04654.x
  • MurrayMGThompsonWF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321–4325, 10.1093/nar/8.19.4321
  • OliverRPIpchoSV. 2004. Arabidopsis pathology breathes new life into the necrotrophs vs biotrophs classification of fungal pathogens. Mol Plant Pathol 5:347–352, 10.1111/j.1364-3703.2004.00228.x
  • PardiniGde GrootPWCosteATKarababaMKlisFMde KosterCGSanglarD. 2006. The CRH family coding for cell wall GPI proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J Biol Chem 281:40399–40411, 10.1074/jbc.M606361200
  • Peraza-EcheverríaLRodríguez-GarcíaCMZapata-SalazarDM. 2008. A rapid, effective method for profuse in vitro conidial production of Mycosphaerella fijiensis. Australas Plant Pathol 37:460–463, 10.1071/AP08042
  • PierleoniAMartelliPLCasadioR. 2008. PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9: 392, 10.1186/1471-2105-9-392
  • PopoloLRagniECarottiCPalomaresOAardemaRBackJWDekkerHLde KoningLJde JongLde KosterCG. 2008. Disulfide bond structure and domain organization of yeast β-(1,3)-glucanosyltransferases involved in cell wall biogenesis. J Biol Chem 283: 18553–18565, 10.1074/jbc.M801562200
  • RagniEFontaineTGissiCLatgéJPPopoloL. 2007. The Gas family of proteins of Saccharomyces cerevisiae: characterization and evolutionary analysis. Yeast 24: 297–308, 10.1002/yea.1473
  • RichardMPlaineA. 2007. A comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6:119–133, 10.1128/EC.00297-06
  • Rodríguez-GarcíaCMPeraza-EcheverríaLIslas-FloresIRCanto-CanchéBBGrijalva-ArangoR. 2010. Isolation of retro-transcribed RNA from in vitro Mycosphaerella fijiensis-infected banana leaves. Genet Mol Res 9:1460–1468, 10.4238/vol9-3gmr865
  • RolliERagniEde Medina-RedondoMArroyoJde AldanaCRPopoloL. 2011. Expression, stability and replacement of glucan-remodeling enzymes during developmental transitions in Saccharomyces cerevisiae. Mol Biol Cell 22:1585–1598, 10.1091/mbc.E10-03-0268
  • Ruiz-HerreraJElorzaVMAlvarezPESentandreuR. 2004. Biosynthesis of the fungal cell wall. In: San-BlasGCalderoneRA, eds. Pathogenic fungi: structural biology and taxonomy. Norfolk, UK: Caister Academic Press. p 41–75.
  • Ruiz-HerreraJOrtiz-CastellanosLMartínezAILeón-RamírezCSentandreuR. 2008. Analysis of the proteins involved in the structure and synthesis of the cell wall of Ustilago maydis. Fungal Genet Biol 45:S71–S76, 10.1016/j.fgb.2008.04.010
  • ShankarUShawBDShimW. 2007. Fusarium verticillioides GAP1, a gene encoding a putative glycolipid-anchored surface protein, participates in conidiation and cell wall structure but not virulence. Microbiol 153:2850–2861, 10.1099/mic.0.2007/007708-0
  • StergiopoulosIde WitP. 2009. Fungal effector proteins. Annu Rev Phytopathol 47:233–263, 10.1146/annurev.phyto.112408.132637
  • StergiopoulosIvan den BurgHAOkmenBBeenenHGvan LiereSKemaGHde WitPJ. 2010. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc Natl Acad Sci USA 107:7610–7615, 10.1073/pnas.1002910107
  • TamuraKPetersonDPetersonNStecherGNeiMKumarS. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739, 10.1093/molbev/msr121
  • WeigMLotharJUweGde KosterCKlisFde GrootP. 2004. Systematic identification in silico of covalently bound cell wall proteins and analysis of protein-polysaccharide linkages of the human pathogen Candida glabrata. Microbiol 150:3129–3144, 10.1099/mic.0.27256-0
  • XieXLipkePN. 2010. On the evolution of fungal and yeast cell walls. Yeast 27:479–88, 10.1002/yea.1787
  • YinQYde GrootPWDekkerHLde JongLKlisFMde KosterCG. 2005. Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: Identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem 280:20894–901, 10.1074/jbc.M500334200
  • ZhangSXiaYKeyhaniNO. 2011. Contribution of the Gas1 gene of the entomopathogenic fungus Beauveria bassiana, encoding a putative glycosylphosphatidylinositol-anchored β-1,3-glucanosyltransferase to conidial thermotolerance and virulence. Appl Environ Microbiol 77:2676–2684, 10.1128/AEM.02747-10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.