627
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus

, , , &
Pages 835-845 | Received 27 Oct 2013, Accepted 20 Jan 2014, Published online: 20 Jan 2017

Literature Cited

  • BatraLR. 1963. Ecology of ambrosia fungi and their dissemination by beetles. Trans Kansas Acad Sci 66: 213–236, doi:10.2307/3626562
  • BatraLR. 1967. Ambrosia fungi: a taxonomic revision and nutritional studies of some species. Mycologia 59:976–1017, doi:10.2307/3757271
  • BeaverRA. 1989. Insect-fungus relationships in the bark and ambrosia beetles. In: WildingNCollinsNMHammondPMWebberJF, eds. Insect-fungus interactions. London: Academic Press. p 121–143.
  • BraderL. 1964. Étude de la relation entre le scolyte des rameaux du caféir, Xyleborus compactus Eichh. (X. morstatti Hag.), et sa plante-hôte. Mededelingen Landbouwhogeschool Wageningen, Nederland 64:1–109.
  • CarilloDDuncanREPloetzJNCampbellAFPloetzRCPeñaJE. 2013. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol, 10.1111/ppa.12073
  • CassarSBlackwellM. 1996. Convergent origins of ambrosia fungi. Mycologia 88:596–601, doi:10.2307/3761153
  • CognatoAIOlsonRORabagliaRJ. 2011. An Asian ambrosia beetle, Xylosandrus amputatus (Blandford) (Curculionidae: Xyleborini), discovered in Florida, USA. Coleopt Bull 65:43–45, doi:10.1649/0010-065X-65.1.43
  • DoleSACognatoAI. 2010. Phylogenetic revision of Xylosandrus Reitter (Coleoptera: Curculionidae: Scolytinae: Xyleborina). Proc Calif Acad Sci 61:451–545.
  • DoleSAJordalBHCognatoAI. 2010. Polyphyly of Xylosandrus Reitter inferred from nuclear and mitochondrial genes (Coleoptera: Curculionidae: Scolytinae). Mol Phylogen Evol 54:773–782, doi:10.1016/j.ympev.2009.11.011
  • FarrellBDSequeiraASO’MearaBCNormarkBBChungJHJordalBH. 2001. The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution 55:2011–2027, doi:10.1111/j.0014-3820.2001.tb01318.x
  • FraedrichSWHarringtonTCBatesCAJohnsonJReidLSBestGSLeiningerTDHawkinsTS. 2011. Susceptibility to laurel wilt and disease incidence in two rare plant species, pondberry and pondspice. Plant Dis 95:1056–1062, doi:10.1094/PDIS-11-10-0841
  • FraedrichSWHarringtonTCRabagliaRJUlyshenMDMayfieldAEHanulaJLEickwortJMMillerDR. 2008. A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224, doi:10.1094/PDIS-92-2-0215
  • Francke-GrosmannH. 1967. Ectosymbiosis in wood-inhabiting insects. In: HenrySM, ed. Symbiosis. Vol. 11. New York: Academic Press. p 142–206.
  • GebhardtHBegerowDOberwinklerF. 2004. Identification of the ambrosia fungus of Xyleborus monographus and X. dryographus (Coleoptera: Curculionidae, Scolytidae). Mycol Prog 3:95–102, doi:10.1007/s11557-006-0080-1
  • GebhardtHWeissMOberwinklerF. 2005. Dryadomyces amasae: a nutritional fungus associated with ambrosia beetles of the genus Amasa (Coleoptera: Curculionidae, Scolytinae). Mycol Res 109:687–696, doi:10.1017/S0953756205002777
  • HarringtonTC. 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. In: VegaFEBlackwellM, eds. Insect-fungal associations: ecology and evolution. New York: Oxford Univ. Press Inc. p 257–292.
  • HarringtonTC. 2009. The genus Ceratocystis. Where does the oak wilt fungus fit? In: AppelDNBillingsRF, eds. Proceedings of the 2nd National Oak Wilt Symposium. Austin, Texas: Texas Forest Service Publication 166. p 21–33.
  • HarringtonTCAghayevaDNFraedrichSW. 2010. New combinations in Raffaelea, Ambrosiella and Hyalorhinocladiella and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–361, doi:10.5248/111.337
  • HarringtonTCFraedrichSW. 2010. Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus. Phytopathology 100:1118–1123, doi:10.1094/PHYTO-01-10-0032
  • HarringtonTCFraedrichSWAghayevaDN. 2008. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404.
  • HarringtonTCYunHYLuSSGotoHAghayevaDNFraedrichSW. 2011. Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036, doi:10.3852/10-417
  • HulcrJCognatoAI. 2010. Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution 64: 3205–3212, doi:10.1111/j.1558-5646.2010.01055.x
  • HulcrJDunnRR. 2011. The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proc Roy Soc B 278:2866–2873, doi:10.1098/rspb.2011.1130
  • HulcrJRountreeNRDiamondSEStelinskiLLFiererNDunnRR. 2012. Mycangia of ambrosia beetles host communities of bacteria. Microb Ecol 64:784–793, doi:10.1007/s00248-012-0055-5
  • KanekoT. 1967. Shot-hole borer of tea plant in Japan. Jap Agric Res Quart 22:19–21.
  • KassonMTO’DonnellKRooneyAPSinkSPloetzRCPloetzJNKonkolJLCarilloDFreemanSMendelZSmithJABlackAWHulcrJBatemanCStefkovaKCampbellPRGeeringADWDannEKEskalenAMohottiKShortDPGAokiTFenstermacherKADavisDDGeiserDM. 2013. An inordinate fondness for Fusarium: Phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other host plants. Fungal Gen Biol 56:147–157, doi:10.1016/j.fgb.2013.04.004
  • KinuuraH. 1995. Symbiotic fungi associated with ambrosia beetles. Jap Agric Res Quart 29:57–63.
  • KokLT. 1979. Lipids of ambrosia fungi in the life of mutualistic beetles. In: BatraLR, ed. Insect-fungus symbiosis. Chichester, Sussex, UK: Halsted Press. p 33–52.
  • KolarikMHulcrJ. 2009. Mycobiota associated with the ambrosia beetle Scolytodes unipunctatus (Coleoptera: Curculionidae, Scolytinae). Mycol Res 113:44–60, doi:10.1016/j.mycres.2008.08.003
  • Massoumi AlamoutiSTsuiCKMBreuilC. 2009. Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res 113:822–835, doi:10.1016/j.mycres.2009.03.003
  • MüllnerHDaumG. 2004. Dynamics of neutral lipid storage in yeast. Acta Biochim Polon 51:323–347.
  • NorrisDM. 1976. Chemical interdependence among Xyleborus spp., ambrosia beetles and their symbiotic microbes. Beih Mater Org 3:479–488.
  • Paulin-MahadyAEHarringtonTCMcNewD. 2002. Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 94:62–72, doi:10.2307/3761846
  • RabagliaRJDoleSACognatoAI. 2006. Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, with an illustrated key. Ann Entomol Soc Am 99:1034–1056, doi:10.1603/0013-8746(2006)99[1034:ROAXCC]2.0.CO;2
  • RaynerRW. 1970. A mycological color chart. Kew, Surrey: Commonwealth Mycological Institute and the British Mycological Society.
  • RoeperRA. 1995. Patterns of mycetophagy in Michigan ambrosia beetles. Mich Academician 26:153–161.
  • RoeperRAHazenCRHelselDKBunceMA. 1980. Studies on Michigan ambrosia fungi. Mich Bot 19:69–74.
  • RonquistFHuelsenbeckJP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574, doi:10.1093/bioinformatics/btg180
  • SixDLStoneWDde BeerZWWoolfolkSW. 2009. Ambrosiella beaveri sp. nov. associated with an exotic ambrosia beetle, Xylosandrus mutilatus (Coleoptera: Curculionidae, Scolytinae), in Mississippi, USA. Antonie van Leeuwenhoek 96:17–29, doi:10.1007/s10482-009-9331-x
  • SwoffordDL. 2002. PAUP* 4: phylogenetic analysis using parsimony (and other methods). Sunderland, Massachusetts: Sinauer Associates.
  • von ArxJAHennebertGL. 1964. Deux champignons ambrosia. Mycopathol Mycol Appl 25:309–315, doi:10.1007/BF02049918

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.