300
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Acid protease production in fungal root endophytes

, &
Pages 1-11 | Received 28 Apr 2014, Accepted 01 Oct 2014, Published online: 20 Jan 2017

Literature cited

  • AbarenkovKHenrik NilssonRLarssonK-HAlexanderIJEberhardtUErlandSHøilandKKjøllerRLarssonEPennanenTet al. 2010. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285, doi:10.1111/j.1469-8137.2009.03160.x
  • AbrahamLD. 1995. Functions of a proteinase secreted by the sap-staining fungus Ophiostoma piceae. Vancouver, BC: The University of British Columbia [doctoral dissertation]. 201 p.
  • AbuzinadahRAReadDJ. 1986. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493, doi:10.1111/j.1469-8137.1986.tb02886.x
  • AsahiMLindquistRFukuyamaKApodacaGEpsteinWMcKerrowJ. 1985. Purification and characterization of major extracellular proteinases from Trichophyton rubrum. Biochem J 232:139–144.
  • BaldrianP. 2009. Ectomycorrhizal fungi and their enzymes in soils: is there enough evidence for their role as facultative soil saprotrophs? Oecologia 161:657–660, doi:10.1007/s00442-009-1433-7
  • BaldrianPVoriskovaJDobiasovaPMerhautovaVLisaLValaskovaV. 2011. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338:111–125, doi:10.1007/s11104-010-0324-3
  • BradfordMM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254, doi:10.1016/0003-2697(76)90527-3
  • BrundrettMC. 2006. Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: SchulzBBoyleCSieberTN, eds. Microbial root endophtyes. Germany: Springer-Verlag. p 281–298.
  • CaldwellBAJumpponenATrappeJM. 2000. Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia 92:230–232, doi:10.2307/3761555
  • ChalotMBrunA. 1998. Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44, doi:10.1111/j.1574-6976.1998.tb00359.x
  • ColpaertJVvan LaereA. 1996. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytol 134:133–141, doi:10.1111/j.1469-8137.1996.tb01153.x
  • DanielsonRM. 1984. Ectomycorrhizal associations in jack pine stands in northeastern Alberta. Can J Bot 62:932–939, doi:10.1139/b84-132
  • DomschKHGamsWAndersonT-H. 1980. Compendium of soil fungi. London: Academic. 859 p.
  • DubovenkoAGDunaevskyYEBelozerskyMAOppertBLordJCElpidinaEN. 2010. Trypsin-like proteins of the fungi as possible markers of pathogenicity. Fungal Biol 114:151–159, doi:10.1016/j.funbio.2009.11.004
  • DunaevskyYEGrubanTNBelyakovaGABelozerskyMA. 2006. Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis. Microbiology 75:649–652, doi:10.1134/S0026261706060051
  • FarrellMHillPFarrarJDeLucaTRobertsPKiellandKDahlgrenRMurphyDHobbsPBardgettRet al. 2012. Oligopeptides represent a preferred source of organic N uptake: a global phenomenon? Ecosystems:1–13.
  • FiskMCFaheyTJSobierajJHStaniecACCristTO. 2011. Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant Soil 341:279–293, doi:10.1007/s11104-010-0643-4
  • FujimotoZFujiiYKanekoSKobayashiHMizunoH. 2004. Crystal structure of aspartic proteinase from Irpex lacteus in complex with inhibitor pepstatin. J Mol Biol 341:1227–1235, doi:10.1016/j.jmb.2004.06.049
  • GeisselerDHorwathWRJoergensenRGLudwigB. 2010. Pathways of nitrogen utilization by soil microorganisms – A review. Soil Biol Biochem 42:2058–2067, doi:10.1016/j.soilbio.2010.08.021
  • GiordanoLGonthierPVareseGCMiserereLNicolottiG. 2009. Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers 38:69–83.
  • GreletGAJohnsonDVralstadTAlexanderIJAndersonIC. 2011. New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots (vol 188, pg 210, 2010). New Phytol 189:643–643, doi:10.1111/j.1469-8137.2010.03560.x
  • GrünigCRQuelozVSieberTNHoldenriederO. 2008a. Dark septate endophytes (DSE) of the Phialocephala fortinii s.l.-Acephala applanata species complex in tree roots: classification, population biology, and ecology. Botany 86:1355–1369, doi:10.1139/B08-108
  • GrünigCRDuoASieberTNHoldenriederO. 2008b. Assignment of species rank to six reproductively isolated cryptic species of the Phialocephala fortinii s.l.-Acephala applanata species complex. Mycologia 100:47–67, doi:10.3852/mycologia.100.1.47
  • HachmannJPAmsheyJW. 2005. Models of protein modification in tris-glycine and neutral pH bis-tris gels during electrophoresis: effect of gel pH. Anal Biochem 342:237–245, doi:10.1016/j.ab.2005.04.015
  • HalmschlagerEKowalskiT. 2004. The mycobiota in nonmycorrhizal roots of healthy and declining oaks. Can J Bot 82:1446–1458, doi:10.1139/b04-101
  • HambletonSSiglerL. 2005. Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (Hymenoscyphus ericae), Leotiomycetes. Stud Mycol:1–27, 10.3114/sim.53.1.1
  • HedlundKBoddyLPrestonCM. 1991. Mycelial responses of the soil fungus, Mortierella isabellina, to grazing by Onychiurus armatus (Collembola). Soil Biol Biochem 23:361–366, doi:10.1016/0038-0717(91)90192-M
  • HoffJAKlopfensteinNBMcDonaldGITonnJRKimMSZambinoPJHessburgPFRogersJDPeeverTLCarrisLM. 2004. Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). For Pathol 34:255–271, doi:10.1111/j.1439-0329.2004.00367.x
  • JumpponenA. 2001. Dark septate endophytes – are they mycorrhizal? Mycorrhiza 11:207–211, doi:10.1007/s005720100112
  • JumpponenATrappeJM. 1998. Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310, doi:10.1046/j.1469-8137.1998.00265.x
  • JumpponenATrappeJM. 1998. Performance of Pinus contorta inoculated with two strains of root endophytic fungus, Phialocephala fortinii: effects of synthesis system and glucose concentration. Can J Bot 76:1205–1213.
  • KernaghanG. 2013. Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees. Symbiosis 61:113–123, doi:10.1007/s13199-013-0265-8
  • KernaghanGPatriquinG. 2011. Host associations between fungal root endophytes and boreal trees. Microb Ecol 62:460–473, doi:10.1007/s00248-011-9851-6
  • Kögel-KnabnerI. 2002. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162, doi:10.1016/S0038-0717(01)00158-4
  • KredicsLKocsubéSAntalZHatvaniLManczingerLVágvölgyiC. 2009. Extracellular proteases of mycoparasitic and nematophagous fungi. In: RaiMBridgePD, eds. Appl Mycol. London, UK: CAB International. p 290–398.
  • KudryavtsevaOADunaevskyYEKamzolkinaOVBelozerskyMA. 2008. Fungal proteolytic enzymes: Features of the extracellular proteases of xylotrophic basidiomycetes. Microbiology 77: 643–653, doi:10.1134/S0026261708060015
  • LantzMSCiborowskiP. 1994. Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol 235:563–594, doi:10.1016/0076-6879(94)35171-6
  • LeakeJRReadDJ. 1990. Proteinase activity in mycorrhizal fungi I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol 116:123–128, doi:10.1111/j.1469-8137.1990.tb00517.x
  • LeakeJRReadDJ. 1991. Proteinase activity in mycorrhizal fungi III. Effects of protein, protein hydrolysate, glucose and ammonium on production of extracellular proteinase by Hymenoscyphus ericae (Read) Korf and Kernan. New Phytol 117:309–317, doi:10.1111/j.1469-8137.1991.tb04912.x
  • LeviMCowlingE. 1969. Role of nitrogen in wood deterioration. VII. Physiological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen. Phytopathol 59:460–468.
  • LundebergG. 1970. Utilisation of various nitrogen sources, in particular bound soil nitrogen, by mycorrhizal fungi. Studia Forestalia Suecica 79:1–95.
  • MandyamKJumpponenA. 2005. Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189, doi:10.3114/sim.53.1.173
  • MandyamKLoughinTJumpponenA. 2010. Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 102:813–821, doi:10.3852/09-212
  • MartinFAertsAAhrenDBrunADanchinEGJDuchaussoyFGibonJKohlerALindquistEPeredaVSalamovAShapiroHJWuytsJBlaudezDBueeMBroksteinPCanbackBCohenDCourtyPECoutinhoPMDelaruelleCDetterJCDeveauADiFazioSDuplessisSFraissinet-TachetLLucicEFrey-KlettPFourreyCFeussnerIGayGGrimwoodJHoeggerPJJainPKilaruSLabbeJLinYCLegueVLe TaconFMarmeisseRMelayahDMontaniniBMuratetMNehlsUNiculita-HirzelHOudot-Le SecqMPPeterMQuesnevilleHRajashekarBReichMRouhierNSchmutzJYinTChalotMHenrissatBKuesULucasSvan de PeerYPodilaGKPolleAPukkilaPJRichardsonPMRouzePSandersIRStajichJETunlidATuskanGGrigorievIV. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92, doi:10.1038/nature06556
  • MartinFKohlerAMuratCBalestriniRCoutinhoPMJaillonOMontaniniBMorinENoelBPercudaniRPorcelBRubiniAAmicucciAAmselemJAnthouardVArcioniSArtiguenaveFAuryJ-MBallarioPBolchiABrennaABrunABuéeMCantarelBChevalierGCoulouxADa SilvaCDenoeudFDuplessisSGhignoneSHilselbergerBIottiMMarçaisBMelloAMirandaMPacioniGQuesnevilleHRiccioniCRuotoloRSplivalloRStocchiVTisserantEViscomiARZambonelliAZampieriEHenrissatBLebrunM-HPaolocciFBonfantePOttonelloSWinckerP. 2010. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038, doi:10.1038/nature08867
  • MayerhoferMSKernaghanGHarperKA. 2013. The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128, doi:10.1007/s00572-012-0456-9
  • MenkisAAllmerJVasiliauskasRLygisVStenlidJFinlayR. 2004. Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108: 965–973, doi:10.1017/S0953756204000668
  • MenkisAVasiliauskasRTaylorAFSStenstromEStenlidJFinlayR. 2006. Fungi in decayed roots of conifer seedlings in forest nurseries, afforested clear-cuts and abandoned farmland. Plant Pathol 55:117–129, doi:10.1111/j.1365-3059.2005.01295.x
  • MonodMCapocciaSLechenneBZauggCHoldomMJoussonO. 2002. Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419, doi:10.1078/1438-4221-00223
  • NagendranSHallen-AdamsHEPaperJMAslamNWaltonJD. 2009. Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435, doi:10.1016/j.fgb.2009.02.001
  • NäsholmTHogbergPFranklinOMetcalfeDKeelSGCampbellCHurryVLinderSHogbergMN. 2013. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221, doi:10.1111/nph.12139
  • NehlsUBockAEinigWHamppR. 2001. Excretion of two proteases by the ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24: 741–747, doi:10.1046/j.1365-3040.2001.00717.x
  • NewshamKK. 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793, doi:10.1111/j.1469-8137.2010.03611.x
  • PavlukovaEBBelozerskyMADunaevskyYE. 1998. Extracellular proteolytic enzymes of filamentous fungi. Biochem-Moscow 63:899–928.
  • RichardCFortinJ. 1974. Distribution géographique, écologie, physiologie, pathogenicité et sporulation du Mycelium radicis atrovirens. Phytoprotection 55:67–88.
  • RuotsalainenALKytoviitaMM. 2004. Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140:226–233, doi:10.1007/s00442-004-1586-3
  • SaikkonenKFaethSHHelanderMSullivanTJ. 1998. Fungal endophytes: A continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343, doi:10.1146/annurev.ecolsys.29.1.319
  • SchulzBBoyleC. 2005. The endophytic continuum. Mycol Res 109:661–686, doi:10.1017/S095375620500273X
  • SchulzBRommertAKDammannUAustHJStrackD. 1999. The endophyte-host interaction: a balanced antagonism? Mycol Res 103:1275–1283, doi:10.1017/S0953756299008540
  • ŠimkovičMKurucováAHunováMVarečkaL. 2008. Induction of secretion of extracellular proteases from Trichoderma viride. Acta Chimica Slovaca 1:250–264.
  • St LegerRJJoshiLRobertsDW. 1997. Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143: 1983–1992, doi:10.1099/00221287-143-6-1983
  • SummerbellRC. 2005. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol:121–145, 10.3114/sim.53.1.121
  • SuzukiRShimodairaH. 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542, doi:10.1093/bioinformatics/btl117
  • R Core Team. 2013. R 3.0.1: A language and environment for statistical computing. Vienna, Austria.
  • TellenbachCGrunigCRSieberTN. 2011. Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolate-dependent. Environ Microbiol 13: 2508–2517, doi:10.1111/j.1462-2920.2011.02523.x
  • ten HaveADekkersEKayJPhylipLHvan KanJAL. 2004. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150:2475–2489, doi:10.1099/mic.0.27058-0
  • UpsonRReadDJNewshamKK. 2009. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11, doi:10.1007/s00572-009-0260-3
  • UsukiFNarisawaH. 2007. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184, doi:10.3852/mycologia.99.2.175
  • VohníkMFendrychMKolarikMGryndlerMHrrselovaHAlbrechtovaJVosatkaM. 2007. The ascomycete Meliniomyces variabilis isolated from a sporocarp of Hydnotrya tulasnei (Pezizales) intracellularly colonises roots of ecto-and ericoid mycorrhizal host plants. Czech Mycol 59:215.
  • VohníkMMrnkaLLukešováTClara BruzoneMKohoutPFehrerJ. 2013. The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6: 281–292, doi:10.1016/j.funeco.2013.03.006
  • WatkinsonSCBurtonKSWoodDA. 2001. Characteristics of intracellular peptidase and proteinase activities from the mycelium of a cord-forming wood decay fungus, Serpula lacrymans. Mycol Res 105: 698–704, doi:10.1017/S0953756201003938
  • WilcoxHEWangC. 1987. Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can J For Res 17:884–899, doi:10.1139/x87-140

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.