159
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Changes in cellular infrastructure after induced endoplasmic reticulum stress in Moniliophthora perniciosa

, , , &
Pages 869-881 | Received 09 Sep 2014, Accepted 02 May 2016, Published online: 20 Jan 2017

Literature cited

  • Abu-ElheigaLMatzukMMAbo-HashemaKAHWakilSJ. 2001. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2:2613–2616, doi:10.1126/science.1056843
  • AlvimFCCarolinoSMCascardoJCNunesCCMartinezCAOtoniWCFontesEP. 2001. Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:1042–1054, doi:10.1104/pp.126.3.1042
  • AlvimFCMattosEMPirovaniCPGramachoKPungartnikCBrendelMCascardoJCMVincentzM. 2009. Carbon source-induced changes in the physiology of the cacao pathogen Moniliophthora perniciosa (Basidiomycetes) affect mycelia morphology and secretion of necrosis-inducing proteins. Genet Mol Res 8:1035–1050, doi:10.4238/vol8-3gmr619
  • ApelKHirtH. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399, doi:10.1146/annurev.arplant.55.031903.141701
  • BernalesSMcDonaldKLWalterP. 2006. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 4:2311–2324, doi:10.1371/journal.pbio.0040423
  • BernalesSSchuckSWalterP. 2007. ER-Phagy selective autophagy of the endoplasmic reticulum. Autophagy 3:285–287, doi:10.4161/auto.3930
  • BoverisA. 1998. Biochemistry of free radicals: from electrons to tissues. Medicina (B. Aires) 58:350–356.
  • BradnerJRNevalainenKMH. 2003. Metabolic activity in filamentous fungi can be analysed by flow cytometry. J Microbiol Methods 54:193–201, doi:10.1016/S0167-7012(03)00043-5
  • BrendelMHaynesRH. 1973. Interactions among genes controlling sensitivity to radiation and alkylation in yeast. Mol Gen Genet 125:197–216, doi:10.1007/BF00270743
  • CeitaGOMacêdoJNASantosTBAlemannoLGesteiraASMicheliFMarianoACGramachoKPSilvaDCMeinhardtLMazzaferaPPereiraGAGCascardoJCM. 2007. Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci 173:106–117, doi:10.1016/j.plantsci.2007.04.006
  • Coto-MontesABogaJARosales-CorralSFuentes-BrotoLTanDXReiterRJ. 2012. Role of melatonin in the regulation of autophagy and mitophagy: a review. Mol Cell Endocrinol 361:12–23, doi:10.1016/j.mce.2012.04.009
  • Dalle-DonneIRossiRGiustariniDColomboRMilzaniA. 2007. S-glutathionylation in protein redox regulation. Free Radic Biol Med 43:883–898, doi:10.1016/j.freeradbiomed.2007.06.014
  • DelgadoJMateosMABenítezT. 2003. Glucose uptake in Trichoderma harzianum: role of gtt1. Eukaryot Cell 2:708–717, doi:10.1128/EC.2.4.708-717.2003
  • DeverauxQLReedJC. 1999. IAP family proteins-suppressors of apoptosis. Genes Dev 13:239–252, doi:10.1101/gad.13.3.239
  • EllisEM. 2007. Reactive carbonys and oxidative stress: potential for therapeutic intervention. Pharm Therap 115:13–24, doi:10.1016/j.pharmthera.2007.03.015
  • FigueiredoJEFCascardoJCMCarolinoSMBAlvimF. 1997. Water-stress regulation and molecular analysis of the soybean BiP gene family. Rev Bras Fisiol Veg 9:103–110.
  • FilhoDFPungartnikCCascardoJCMBrendelM. 2006. Broken hyphae of the basidiomycete Crinipellis perniciosa allow quantitative assay of toxicity. Curr Microbiol 52:407–412, doi:10.1007/s00284-005-0405-3
  • GalluzziLMaiuriMCVitaleIZischkaHCastedoMZitvogelLKroemerG. 2007. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243, doi:10.1038/sj.cdd.4402148
  • GardnerBMPincusDGotthardtKGallagherCMWalterP. 2013. Endoplasmic reticulum stress sensing in the unfolded protein response. Cold Spring Harb Perspect Biol 5:1–15, doi:10.1101/cshperspect.a013169
  • GesteiraASMicheliFCarelsNDa SilvaACGramachoKPSchusterIMacêdoJNPereiraGACascardoJC. 2007. Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann Bot 100:129–140, doi:10.1093/aob/mcm092
  • GregersenNBrossP. 2010. Protein misfolding and cellular stress: an overview. Methods Mol Biol 648:3–23, doi:10.1007/978-1-60761-756-3_1
  • GriffithGWNicholsonJNenningerABirchRN. 2003. Witches’ brooms and frosty pods: two major pathogens of cacao. New Zeal J Bot 41:423–435, doi:10.1080/0028825X.2003.9512860
  • HardingHPZhangYZengHNovoaILuPDCalfonMSadriNYunCPopkoBPaulesRStojdlDFBellJCHettmannTLeidenJMRonD. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633, doi:10.1016/S1097-2765(03)00105-9
  • HedgerJNPickeringVAragundiJ. 1987. Variability of populations of the witches’ broom disease of cocoa Crinipellis perniciosa. Trans Br Mycol Soc 88:533–546, doi:10.1016/S0007-1536(87)80037-2
  • HeldKDBiaglowJE. 1994. Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiat Res 139:15–23, doi:10.2307/3578727
  • HeldKDSylvesterFCHopciaKLBiaglowJE. 1996. Role of Fenton chemistry in thiol-induced toxicity and apoptosis. Radiat Res 145:542–553, doi:10.2307/3579272
  • HolmsH. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol Rev 21:85–116, doi:10.1111/j.1574-6976.1996.tb00255.x
  • IrsiglerASCostaMDZhangPReisPADeweyREBostonRSFontesEP. 2007. Expression profiling on soybean leaves reveals integration of ER- and osmotic-stress pathways. BMC Genomics 8:431, doi:10.1186/1471-2164-8-431
  • JungTBaderNGruneT. 2007. Oxidized proteins: intracellular distribution and recognition by the proteasome. Arch Biochem Biophys 462:231–237, doi:10.1016/j.abb.2007.01.030
  • KaufmanRJ. 2002. Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398, doi:10.1172/JCI0216886
  • KrishnanKAskewDS. 2014. The fungal UPR: a regulatory hub for virulence traits in the mold pathogen Aspergillus fumigatus. Virulence 5:334–340, doi:10.4161/viru.26571
  • LaiETeodoroTVolchukA. 2007. Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology 22:193–201, doi:10.1152/physiol.00050.2006
  • LeeAS. 1987. Coordinated regulation of a set of genes by glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12:20–23, doi:10.1016/0968-0004(87)90011-9
  • LivakKJSchmittgenTD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Methods 25:402–408, doi:10.1006/meth.2001.1262
  • MartinezIMChrispeelsMJ. 2003. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15:561–576, doi:10.1105/tpc.007609
  • MayerAMStaplesRCGil-AdNL. 2001. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58:33–41, doi:10.1016/S0031-9422(01)00187-X
  • MeinhardtLBellatoCRinconesJAzevedoRCascardoJCMPereiraGAG. 2008. In vitro production of biotrophic-like cultures of Crinipellis perniciosa, the causal agent of witches’ broom disease of Theobroma cacao. Curr Microbiol 52:191–196, doi:10.1007/s00284-005-0182-z
  • MeloSCPungartnikCCascardoJCBrendelM. 2006. Rapid and efficient protocol for DNA extraction and molecular identification of the basidiomycete Crinipellis perniciosa. Genet Mol Res 5:851–855.
  • MondegoJMCarazzolleMFCostaGGFormighieriEFParizziLPRinconesJCotomacciCCarraroDMCunhaAFCarrerHVidalROEstrelaRCGarcíaOThomazellaDPde OliveiraBVPiresABRioMCAraújoMRde MoraesMHCastroLAGramachoKPGonçalvesMSNetoJPNetoAGBarbosaLVGuiltinanMJBaileyBAMeinhardtLWCascardoJCPereiraGA. 2008. A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genomics 9:548, doi:10.1186/1471-2164-9-548
  • MoriK. 2009. Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem 146:743–750, doi:10.1093/jb/mvp166
  • NeuhoffVAroldNTaubeDEhrhardtW. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9:255–262, doi:10.1002/elps.1150090603
  • PereiraACFCardosoTHSBrendelMPungartnikC. 2013. In silico modeling of the Moniliophthora perniciosa Atg8 protein. Genet Mol Res 12:6619–6628, doi:10.4238/2013.December.11.13
  • PilonMSchekmanR. 1999. Protein translocation: How Hsp70 pulls it off. Cell 97:679–682, doi:10.1016/S0092-8674(00)80780-1
  • PiresABGramachoKPSilvaDCGóes-NetoASilvaMMMuniz-SobrinhoJSPortoRFVillela-DiasCBrendelMCascardoJCPereiraGA. 2009. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol 9:158, doi:10.1186/1471-2180-9-158
  • PirovaniCPCarvalhoHAMachadoRCGomesDSAlvimFCPomellaAWGramachoKPCascardoJCPereiraGAMicheliF. 2008. Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches’ broom disease. Electrophoresis 29:2391–2401, doi:10.1002/elps.200700743
  • PungartnikCMeloSCBassoTSMacenaWGCascardoJCMBrendelM. 2009. Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa. Fungal Genet Biol 46:461–472, doi:10.1016/j.fgb.2009.03.007
  • RinconesJScarpariLMCarazzolleMFMondegoJMFormighieriEFBarauJGCostaGGCarraroDMBrentaniHPVilas-BoasLAde OliveiraBVSabhaMDiasRCascardoJMAzevedoRAMeinhardtLWPereiraGA. 2008. Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa. Mol Plant Microbe Interact 21:891–908, doi:10.1094/MPMI-21-7-0891
  • SantosRXMeloSCOCascardoJCMBrendelMPungartnikC. 2008. Carbon source-dependent variation of acquired mutagen resistance of Moniliophthora perniciosa: similarities in natural and artificial systems. Fungal Genet Biol 45:851–860, doi:10.1016/j.fgb.2008.02.005
  • ScarpariLMMeinhardtLWMazzaferaPPomellaAWVSchiavinatoMACascardoJCMPereiraGAG. 2005. Biochemical changes during the development of witches’ broom: the most important disease of cacao in Brazil caused by Crinipellis perniciosa. J Exp Bot 56:865–877, doi:10.1093/jxb/eri079
  • ShamuCECoxJSWalterP. 1994. The unfolded-protein response pathway in yeast. Trends Cell Biol 4:56–60, doi:10.1016/0962-8924(94)90011-6
  • ThibaultGShuiGKimWMcalisterGCIsmailNGygiSPWenkMRNgDT. 2012. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network. Mol Cell 48:16–27, doi:10.1016/j.molcel.2012.08.016
  • ThomazellaDPTeixeiraPJOliveiraHCSavianiEERinconesJToniIMReisOGarciaOMeinhardtLWSalgadoIPereiraGA. 2012. The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development. New Phytol 194:1025–1034, doi:10.1111/j.1469-8137.2012.04119.x
  • TowleHC. 2005. Glucose as a regulator of eukaryotic gene transcription. Trends Endocrinol Metab 16:489–494, doi:10.1016/j.tem.2005.10.003
  • VitaleACeriottiADeneckeJ. 1993. The role of the endoplasmic reticulum in protein synthesis, modification and intracellular transport. J Exp Bot 44:1417–1444, doi:10.1093/jxb/44.9.1417
  • XieZKlionskyDJ. 2007. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9:1102–1109, doi:10.1038/ncb1007-1102
  • YorimitsuTKlionskyDJ. 2005. Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542–1552, doi:10.1038/sj.cdd.4401765
  • YorimitsuTNairUYangZKlionskyDJ. 2006. Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281:30299–30304, doi:10.1074/jbc.M607007200
  • WalterPRonD. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081–1086, doi:10.1126/science.1209038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.