222
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

The nascent-polypeptide-associated complex alpha subunit regulates the polygalacturonases expression negatively and influences the pathogenicity of Sclerotinia sclerotiorum

, , , , , , & show all
Pages 1130-1137 | Received 21 Sep 2014, Accepted 24 Jun 2015, Published online: 20 Jan 2017

Literature cited

  • AlghisiPFavaronF. 1995. Pectin-degrading enzymes and plant-parasite interactions. Eur J Plant Pathol 101:365–375, doi:10.1007/BF01874850
  • Al-ShantiNAldahoodiZ. 2006. Inhibition of alpha nascent polypeptide associated complex protein may induce proliferation, differentiation and enhance the cytotoxic activity of human CD8+ T cells. J Clin Immunol 26:457–464, doi:10.1007/s10875-006-9041-3
  • AndersenKMSempleCAHartmann-PetersenR. 2009. Characterization of the nascent polypeptide-associated complex in fission yeast. Plant Physiol Biochem 47:1037–1045.
  • BakerC. 1952. The determination of oxalates in fresh plant material. Analyst 77:340–344, doi:10.1039/AN9527700340
  • BolandGJHallR. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16:93–108, doi:10.1080/07060669409500766
  • BoltonMDThommaBPHJNelsonBD. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16, doi:10.1111/j.1364-3703.2005.00316.x
  • CessnaSGSearsVEDickmanMBLowPS. 2000. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2200, doi:10.1105/tpc.12.11.2191
  • ChenCAryeHRenaGOdedYMartinBD. 2004. MAPK regulation of sclerotial development in Sclerotinia sclerotiorum is linked with pH and CAMP sensing. Mol Plant Microb Interact 17:404–413, doi:10.1094/MPMI.2004.7.4.404
  • ChenLXuJ. 2007. Oil crop diseases. In: Agricultural plant pathology. Vol. 3. Beijing: China Agriculture Press; 2007. 238 p.
  • ErentalAHarelAYardenO. 2007. Type 2A phosphoprotein phosphatase is required for asexual development and pathogenesis of Sclerotinia sclerotiorum. Mol Plant Microb Interact 20:944–954, doi:10.1094/MPMI-20-8-0944
  • FünfschillingURospertS. 1999. Nascent polypeptide–associated complex stimulates protein import into yeast mitochondria. Mol Biol Cell 10:3289–3299.
  • HarelABercovichSYardenO. 2006. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-independent manner. Mol Plant Microb Interact 19:682–693, doi:10.1094/MPMI-19-0682
  • HartlFUHayer-HartlM. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858.
  • KaszaZVagvölgyiCFévreMCottonP. 2004. Molecular characterization and in planta detection of Sclerotinia sclerotiorum endopolygalacturonase genes. Curr Microbiol 48:208–213, doi:10.1007/s00284-003-4166-6
  • KimKSMinJYDickmanMB. 2008. Oxalic acid is an elicitor of plant-programmed cell death during Sclerotinia sclerotiorum disease development. Mol Plant Microb Interact 21:605–612, doi:10.1094/MPMI-21-5-0605
  • Kirstein-MilesJSciorADeuerlingEMorimotoRI. 2013. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J 32:1451–1468, doi:10.1038/emboj.2013.87
  • KoplinAPreisslerIlinaYMKochASciorMDeuerling ErhardtE. 2010. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. J Cell Biol 189:57–68, doi:10.1083/jcb.200910074
  • KumarSTamuraKNeiM. 2004. MEGA 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163, doi:10.1093/bib/5.2.150
  • LiRRimmerRBuchwaldtLSharpeAGSéguin-SwartzGHegedusDD. 2004. Interaction of Sclerotinia sclerotiorum with Brassica napus: cloning and characterization of endo-and exo-polygalacturonases expressed during saprophytic and parasitic modes. Fungal Genet Biol 41:754–765, doi:10.1016/j.fgb.2004.03.002
  • LopezSStuhlLFichelsonSDubart-KupperschmittASt ArnaudRGalindoJRMuratiABerdaNDubreuilPGomezS. 2005. NACA is a positive regulator of human erythroid-cell differentiation. J Cell Sci 118:1595–1605.
  • MoreauAYotovWVGlorieuxFHSt-ArnaudR. 1998. Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol 18:1312–1321.
  • NakayashikiHHanadaSQuocNBKadotaniNTosaYMayamaS. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42:275–283, doi:10.1016/j.fgb.2005.01.002
  • PattersonCGroganR. 1985. Differences in epidemiology and control of lettuce drop caused by Sclerotinia minor and S. sclerotiorum. Plant Dis 69:766–770, doi:10.1094/PD-69-766
  • PunjaZHuangJSJenkinsS. 1985. Relationship of mycelial growth and production of oxalic acid and cell wall-degrading enzymes to virulence in Sclerotium rolfsii. Can J Plant Pathol 7:109–117, doi:10.1080/07060668509501485
  • RaueUOellererSRospertS. 2007. Association of protein biogenesis factors at the yeast ribosomal tunnel exit is affected by the translational status and nascent polypeptide sequence. J Biol Chem 282:7809–7816, doi:10.1074/jbc.M611436200
  • ReimannBBradsherJFrankeJHartmannEWiedmannMPrehnSWiedmannM. 1999. Initial characterization of the nascent polypeptide-associated complex in yeast. Yeast 15:397–407, doi:10.1002/(SICI)1097-0061(19990330)15:5<397::AID-YEA384.3.0.CO;2-U
  • RollinsJA. 2003. The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence. Mol Plant Microb Interact 16:785–795, doi:10.1094/MPMI.2003.16.9.785
  • ThompsonJDGibsonTJPlewniakFJeanmouginFHigginsDG. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882, doi:10.1093/nar/25.24.4876
  • TownsendBBWillettsH. 1954. The development of sclerotia of certain fungi. Trans Br Mycol Soc 37:213–221, doi:10.1016/S0007-1536(54)80003-9
  • WegrzynRDDeuerlingE. 2005. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell Mol Life Sci 62:2727–2738, doi:10.1007/s00018-005-5292-z
  • WillettsHBullockS. 1992. Developmental biology of sclerotia. Mycol Res 96:801–816, doi:10.1016/S0953-7562(09)81027-7
  • WilliamsBKabbageMKimHJBrittRDickmanMB. 2011. Tipping the balance: Sclerotinia sclerotiorum-secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathol 7:e1002107, doi:10.1371/journal.ppat.1002107
  • YotovWVMoreauASt-ArnaudR. 1998. The alpha chain of the nascent polypeptide-associated complex functions as a transcriptional coactivator. Mol Cell Biol 18:1303–1311.
  • YuYJiangDXieJChengJLiGYiXFuY. 2012. Ss-Sl2, a novel cell wall protein with PAN modules, is essential for sclerotial development and cellular integrity of Sclerotinia sclerotiorum. PloS One 7:e34962, doi:10.1371/journal.pone.0034962
  • YueLMuhammadHStephenENatN. 2010. Developmentally induced changes in the sclerotial proteome of Sclerotinia sclerotiorum. Fungal Biol 114:619–627, doi:10.1016/j.funbio.2010.05.003
  • ZhangYYangXLiuQQiuDZhangYZengHYuanJMaoJ. 2010. Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol Res 165:142–151, doi:10.1016/j.micres.2009.03.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.