128
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Paleomycology of the Princeton Chert. III. Dictyosporic microfungi, Monodictysporites princetonensis gen. et sp. nov., associated with decayed rhizomes of an Eocene semi-aquatic fern

Pages 882-890 | Received 04 Feb 2015, Accepted 01 Mar 2016, Published online: 20 Jan 2017

Literature cited

  • AlcornJL. 1992. Parapithomyces clitoriae sp. nov. (Fungi: Hyphomycetes) and its Pseudocercospora synanamorph. Aust Syst Bot 5:711–715, doi:10.1071/SB9920711
  • ArnoldCADaughertyLH. 1964. A fossil dennsteadtioid fern from the Eocene Clarno Formation of Oregon. Contrib Mus Paleontol Univ Mich 19:55–88.
  • AveskampMMde GruyterJWoudenbergJHCVerkleyGJMCrousPW. 2010. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60, doi:10.3114/sim.2010.65.01
  • AveskampMMVerkleyGJde GruyterJMuraceMAPerelloAWoudenbergJHGroenewaldJZCrousPW. 2009. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 101:363–382, doi:10.3852/08-199
  • BakerWAPartridgeECMorgan-JonesG. 2002a. Notes on Hyphomycetes. LXXXV. Junewangia, a genus in which to classify four Acrodictys species and a new taxon. Mycotaxon 81:293–319.
  • BakerWAPartridgeECMorgan-JonesG. 2002b. Notes on Hyphomycetes. LXXXVII. Rhexoacrodictys, a new segregate genus to accommodate four species previously classified in Acrodictys. Mycotaxon 82:95–113.
  • BennettPC. 1991. Quartz dissolution in organic-rich aqueous systems. Geochim Cosmochim Ac 55:1781–1797, doi:10.1016/0016-7037(91)90023-X
  • BennettPCCaseyW. 1994. Chemistry and mechanisms of low-temperature dissolution of silicates by organic acids. In: PitmanEDLewanMD. Organic acids in geological processes. Berlin: Springer-Verlag. 482 p.
  • BennettPCSiegelDIHillBMGlaserPH. 1991. Fate of silicate minerals in a peat bog. Geology 19:328–331, doi:10.1130/0091-7613(1991)019<0328:FOSMIA>2.3.CO;2
  • BoelterDH. 1969. Physical properties of peats as related to degree of decomposition. Soil Sci Soc Am J 33:606–609, doi:10.2136/sssaj1969.03615995003300040033x
  • BoeremaGH. 1993. Contributions towards a monograph of Phoma (Coelomycetes). 2. Section Peyronellaea. Persoonia 15:197–221.
  • BoeremaGHde GruyterJNoordeloosMEHamersMEC. 2004. Phoma identification manual: differentiation of specific and intra-specific taxa in culture. CABI. 470 p.
  • BriggsDE. 1999. Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philos T Roy Soc B 354:7–17, doi:10.1098/rstb.1999.0356
  • BronsonAWKlymiukAAStockeyRATomescuAM. 2013. A perithecial sordariomycete (Ascomycota, Diaporthales) from the Lower Cretaceous of Vancouver Island, British Columbia, Canada. Int J Plant Sci 174:278–292, doi:10.1086/668227
  • CampbellWPGriffithsDA. 1975. The development and structure of thick-walled, multicellular, aerial spores in Diheterospora chlamydosporia (= Verticillium chlamydosporium). Can J Microbiol 21:963–971, doi:10.1139/m75-142
  • Cevallos-FerrizSRSStockeyRAPiggKB. 1991. The Princeton chert: evidence for in situ aquatic plants. Rev Palaeobot Palyno 70:173–185, doi:10.1016/0034-6667(91)90085-H
  • ChanningAEdwardsD. 2003. Experimental taphonomy: silicification of plants in Yellowstone hot-spring environments. T Roy Soc Edin-Earth 94:503–521, doi:10.1017/S026359330300035X
  • ChanningAEdwardsD. 2009. Silicification of higher plants in geothermally influenced wetlands: Yellowstone as a Lower Devonian Rhynie analog. Palaios 24:505–521, doi:10.2110/palo.2008.p08-131r
  • CzajaADKudryavtsevABCodyGDSchopfJW. 2009. Characterization of permineralized kerogen from an Eocene fossil fern. Org Geochem 40:353–364, doi:10.1016/j.orggeochem.2008.12.002
  • DaveyMLCurrahRS. 2009. Atradidymella muscivora gen. et sp. nov. (Pleosporales) and its anamorph Phoma muscivora sp. nov.: a new pleomorphic pathogen of boreal bryophytes. Am J Bot 96:1281–1288, doi:10.3732/ajb.0900010
  • DayMJGibasCFCFujimuraKEEggerKNCurrahRS. 2006. Monodictys arctica, a new hyphomycete from the roots of Saxifraga oppositifolia collected in the Canadian High Arctic. Mycotaxon 98:261–272.
  • De GruyterJAveskampMMWoudenbergJHVerkleyGJGroenewaldJZCrousPW. 2009. Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycol Res 113:508–519, doi:10.1016/j.mycres.2009.01.002
  • DurigDTEsterleJSDicksonTJDurigJR. 1988. An investigation of the chemical variability of woody peat by FT-IR spectroscopy. Appl Spectrosc 42:1239–1244, doi:10.1366/0003702884429986
  • EfremovIA. 1940. Taphonomy: a new branch of paleontology. Pan-Am Geol 74:81–93.
  • EllisMB. 1971. Dematiaceous hyphomycetes. Kew, England: commonwealth Mycological Institute. 608 p.
  • FlanneryMBStottAWBriggsDEEvershedRP. 2001. Chitin in the fossil record: identification and quantification of D-glucosamine. Org Geochem 32:745–54, doi:10.1016/S0146-6380(00)00174-1
  • GamsWZareR. 2001. A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia 72: 329–337.
  • GirardVAdlSM. 2011. Amber microfossils: on the validity of species concept. CR Palevol 10:189–200, doi:10.1016/j.crpv.2010.11.002
  • GolovchenkoAVKurakovAVSemenovaTAZvyagintsevDG. 2013. Abundance, diversity, viability, and factorial ecology of fungi in peatbogs. Eurasian Soil Sci 46:74–90, doi:10.1134/S1064229313010031
  • GolovchenkoAVSemenovaTAPolyakovaAVInishevaLI. 2002. The structure of the micromycete complexes of oligotrophic peat deposits in the southern Taiga subzone of west Siberia. Microbiology 71:575–581, doi:10.1023/A:1020514904709
  • GreenwoodDRArchibaldSBMathewesRWMossPT. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape. Can J Earth Sci 42:167–185, doi:10.1139/e04-100
  • HendersonREDoironR. 1981. Some identification hints for the field classification of peat. In ReesHW. Proceedings of organic soils mapping workshop, Fredericton, New Brunswick. Ottawa: Agriculture Canada Land Resources Research Institute. p 105–110.
  • HoogGSde BeguinHBatenburg-van de VegteWH. 1997. Phaeotheca triangularis, a new meristematic black yeast from a humidifier. Anton Van Lee 71:289–295, doi:10.1023/A:1000156820793
  • HosoyaTHuhtinenS. 2002. Hyaloscyphaceae in Japan (7): Hyaloscypha albohyalina var. monodictys var. nov. Mycoscience 43:405–409, doi:10.1007/S102670200059
  • HughesSJ. 1953. Conidiophores, conidia and classification. Can J Bot 31:577–659, doi:10.1139/b53-046
  • HughesSJ. 1983. Five species of Sarcinella from North America, with notes on Questieriella n. gen., Mitteriella, Endophragmiopsis, Schiffnerula, and Clypeolella. Can J Bot 61:1727–1767, doi:10.1139/b83-184
  • IvanovKE. 1981. Water movement in mirelands. London: Academic Press. 276 p.
  • KalgutkarRMBramanDR. 2008. Santonian to earliest Campanian (Late Cretaceous) fungi from the Milk River Formation, Southern Alberta, Canada. Palynology 32:39–61, doi:10.2113/gspalynol.32.1.39
  • KalgutkarRMJansoniusJ. 2000. Synopsis of fossil fungal spores, mycelia and fructifications. Contributions Series, Am Assoc Strat Palyno 39:1–429.
  • KerpHTrewinNHHassH. 2003. New gametophytes from the Early Devonian Rhynie chert. T Roy Soc Edin: Earth Sci 94:411–28, doi:10.1017/S0263593303000294
  • KirkPM. 1983. New or interesting microfungi. X. Hyphomycetes on Laurus nobilis leaf litter. Mycotaxon 18:259–298, doi:10.1016/s0007-1536(83)80041-2
  • KlymiukAATaylorTNTaylorELKringsM. 2013a. Paleomycology of the Princeton Chert. I. Fossil hyphomycetes associated with the early Eocene aquatic angiosperm, Eorhiza arnoldii. Mycologia 105:121–129, doi:10.3852/12-272
  • KlymiukAATaylorTNTaylorELKringsM. 2013b. Paleomycology of the Princeton Chert. II. Dark-septate fungi in the aquatic angiosperm Eorhiza arnoldii indicate a diverse assemblage of root-colonizing fungi during the Eocene. Mycologia 105:1100–1109, doi:10.3852/13-025
  • KurakovAVLavrent’EvRBNechitailoTYGolyshinPNZvyagintsevDG. 2008. Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Microbiology 77:90–98, doi:10.1134/S002626170801013X
  • LambethJD. 2004. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189, doi:10.1038/nri1312
  • LePageBACurrahRSStockeyRA. 1994. The fossil fungi of the Princeton chert. Int J Plant Sci 155:822–830, doi:10.1086/297221
  • LinXGreenSTfailyMMPrakashOKonstantinidisKTCorbettJEChantonJPCooperWTKostkaJE. 2012. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microb 78:7023–7031, doi:10.1128/AEM.01750-12
  • MatsushimaT. 1996. Matsushima mycological memoirs No. 9 Kobe, Japan: published by the author. 30 p.
  • MouzourasRJonesEBG. 1985. Monodictys pelagica, the anamorph of Nereiospora cristata (Halosphaeriaceae). Can J Bot 63:2444–2447, doi:10.1139/b85-349
  • MustoeGE. 2011. Cyclic sedimentation in the Eocene Allenby Formation of south-central British Columbia and the origin of the Princeton Chert fossil beds. Can J Earth Sci 48:25–42, doi:10.1139/E10-085
  • NonakaKKaifuchiSOmuraSMasumaR. 2013. Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia 105:12–132, doi:10.3852/12-132
  • ParsonsMGNorrisG. 1999. Paleogene fungi from the Caribou Hills, Mackenzie Delta, northern Canada. Palaeontogr Abt B 6:77–167.
  • PirozynskiKA. 1976. Fossil fungi. Ann Rev Phytopath 14:237–246, doi:10.1146/annurev.py.14.090176.001321
  • PirozynskiKAMorgan-JonesG. 1968 Notes on Microfungi. III. Trans Brit Myco Soc 51:185–206, doi:10.1016/S0007-1536(68)80052-X
  • PirozynskiKAWeresubLK. 1979. The classification and nomenclature of fossil fungi. In: KendrickB, ed. The whole fungus, the sexual-asexual synthesis. Vol. 2. Proc Int Mycol. Kananaskis, Alberta: Univ. Calgary. p. 653–688. Ottawa, Canada: National Museum of Natural Science, National Museum of Canada and Kananaskis Foundation.
  • PunithalingamE. 1990. CMI descriptions of fungi and bacteria: set 102, Nos. 1011–1020. Mycopathologia 112:39–63, doi:10.1007/BF01795180
  • RycroftDWWilliamsDJIngramHA. 1975. The transmission of water through peat: I. Review. J Ecol 1:535–556, doi:10.2307/2258734
  • SadowskiE-MBeimfordeCGubeMRikkinenJSinghHSeyfullahLJHeinrichsJNascimbenePCReitnerJSchmidtAR. 2012. The anamorphic genus Monotosporella (Ascomycota) from Eocene amber and from modern Agathis resin. Fungal Biol 116:1099–1110, doi:10.1016/j.funbio.2012.08.003
  • SchmidtARDörfeltHPerrichotV. 2008. Palaeoanellus dimorphus gen. et sp. nov. (Deuteromycotina): a Cretaceous predatory fungus. Am J Bot 95:1328–1334, doi:10.3732/ajb.0800143
  • SchmidtARDörfeltHStruweSPerrichotV. 2010. Evidence for fungivory in Cretaceous amber forests from Gondwana and Laurasia. Palaeontogr Abt B 283:157–173.
  • SchopfJM. 1970. Petrified peat from a Permian coal bed in Antarctica. Science 169:274–277, doi:10.1126/science.169.3942.274
  • SeifertKAMorgan-JonesGGamsWKendrickB. 2011. The genera of hyphomycetes. CBS Biodiversity Series 9. Utrecht, the Netherlands: CBS-KNAW Fungal Biodiversity Centre. 997 p.
  • SheffyMVDilcherDL. 1971. Morphology and taxonomy of fungal spores. Palaeontogr Abt B 133:34–51.
  • SiegelDIGlaserPH. 1987. Groundwater flow in a bog-fen complex, Lost River Peatland, northern Minnesota. J Ecol 75:743–754, doi:10.2307/2260203
  • SieverR. 1962. Silica solubility, 0–200 C., and the diagenesis of siliceous sediments. J Geol 70:127–150, doi:10.1086/626804
  • SinghSKChauhanMS. 2008. Fungal remains from the Neogene sediments of Mahuadanr Valley, Latehar District, Jharkhand, India and their palaeoclimatic significance. J Palaeontol Soc Ind 53:73–81.
  • SlaterBJMcLoughlinSHiltonJ. 2015. A high-latitude Gondwanan lagerstätte: the Permian permineralised peat biota of the Prince Charles Mountains, Antarctica. Gondwana Res 27:1446–73, doi:10.1016/j.gr.2014.01.004
  • SmithSYStockeyRA. 2007. Establishing a fossil record for the perianthless Piperales: Saururus tuckerae sp. nov. (Saururaceae) from the Middle Eocene Princeton Chert. Am J Bot 94:1642–1657, doi:10.3732/ajb.94.10.1642
  • SterflingerKDe BaereRHoogGS deDe WachterRKrumbeinWEHaaseG. 1997. Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Anton Van Lee 72:349–363, doi:10.1023/A:1000570429688
  • SubramanianCV. 1962. Studies on hyphomycetes—I. Proc Indian Acad Sci 55:1–14.
  • SykesRLindqvistJK. 1993. Diagenetic quartz and amorphous silica in New Zealand coals. Org Geochem 20:855–866, doi:10.1016/0146-6380(93)90068-M
  • TaylorELTaylorTNCollinsonJW. 1989. Depositional setting and paleobotany of Permian and Triassic permineralized peat from the central Transantarctic Mountains, Antarctica. Int J Coal Geol 12:657–679, doi:10.1016/0166-5162(89)90068-2
  • TaylorTNKringsMTaylorEL. 2014. Fossil fungi. San Diego, California: Academic Press. 398 p.
  • ThaungMM. 1976. New hyphomycetes from Burma. T Brit Mycol Soc 66:211–215, doi:10.1016/S0007-1536(76)80048-4
  • ThormannMNRiceAVBeilmanDW. 2007. Yeasts in peatlands: a review of richness and roles in peat decomposition. Wetlands 27:761–773, doi:10.1672/0277-5212(2007)27[761:YIPARO]2.0.CO;2
  • TingFT. 1972. Petrified peat from a Paleocene lignite in North Dakota. Science 177:165–166, doi:10.1126/science.177.4044.165
  • TsunedaADaveyMLHambletonSCurrahRS. 2008. Endosporium, a new endoconidial genus allied to the Myriangiales. Botany 86:1020–1033, doi:10.1139/B08-054
  • TsunedaAHambletonSCurrahRS. 2011. The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Botany 89:523–536, doi:10.1139/b11-041
  • UmedaM. 2003. Precipitation of silica and formation of chert-mudstone-peat association in Miocene coastal environments at the opening of the Sea of Japan. Sed Geol 161:249–268, doi:10.1016/S0037-0738(03)00117-9
  • ZareRGamsWEvansHC. 2001. A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73:51–86.
  • ZhangYSchochCLFournierJCrousPWDe GruyterJWoudenbergJHCHirayamaKTanakaKPointingSBSpataforaJWHydeKD. 2009. Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. Stud Mycol 64:85–102, doi:10.3114/sim.2009.64.04

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.