351
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Metabolite diversity in the plant pathogen Alternaria brassicicola: factors affecting production of brassicicolin A, depudecin, phomapyrone A and other metabolites

&
Pages 1138-1150 | Received 27 Feb 2015, Accepted 06 Jul 2015, Published online: 20 Jan 2017

Literature Cited

  • AsaiTChungY-MSakuraiHOzekiTChangFRYamashitaKOshimaY. 2012a. Tenuipyrone, a novel skeletal polyketide from the entomopathogenic fungus, Isaria tenuipes, cultivated in the presence of epigenetic modifiers. Org Lett 14:513–515, doi:10.1021/ol203097b
  • AsaiTYamamotoTOshimaY. 2012b. Aromatic polyketide production in Cordyceps indigotica, an entomopathogenic fungus, induced by exposure to a histone deacetylase inhibitor. Org Lett 14:2006–2009, doi:10.1021/ol3005062
  • AyerWABrowneLMFengMCOrszanskaHSaeedi-GhomiH. 1986. The chemistry of the blue stain fungi. Part 1. Some metabolites of Ceratocystis species associated with mountain pine beetle infected lodgepole pine. Can J Chem 64:904–909, doi:10.1139/v86-149
  • AyerWAPeña-RodriguezLM. 1987. Metabolites produced by Alternaria brassicae, the black spot pathogen of canola. Part 1, the phytotoxic components. J Nat Prod 50:400–407, doi:10.1021/np50051a010
  • BaidyaroyDBroschGGraessleSTrojerPWaltonJD. 2002. Characterization of inhibitor-resistant histone deacetylase activity in plant-pathogenic fungi. Eukaryot Cell 1:538–547, doi:10.1128/EC.1.4.538-547.2002
  • ChungYMEl-ShazlyMChuangDWHwangTLAsaiTOshimaYAshourMLWuYCChangFR. 2013. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. J Nat Prod 76:1260–1266, doi:10.1021/np400143j
  • CichewiczRH. 2010. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 27:11–22, doi:10.1039/b920860g
  • CoolsHJHammond-KosackKE. 2013. Exploitation of genomics in fungicide research: current status and future perspectives. Mol Plant Pathol 14:197–210, doi:10.1111/mpp.12001
  • Gamboa-AnguloMMGarcía-SosaKAlejos-GonzálezFEscalante-ErosaFDelgado-LamasGPeña-RodríguezLM. 2001. Tagetolone and tagetenolone: two phytotoxic polyketides from Alternaria tagetica. J Agric Food Chem 49:1228–1232, doi:10.1021/jf000872k
  • GloerJBPochGKShortDMMcCloskeyDV. 1988. Structure of brassicicolin A: a novel isocyanide antibiotic from the phylloplane fungus Alternaria brassicicola. J Org Chem 53:3758–3761, doi:10.1021/jo00251a017
  • GrossH. 2007. Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl Microbiol Biotechnol 75:267–277, doi:10.1007/s00253-007-0900-5
  • HaasHEisendleMTurgeonBG. 2008. Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187, doi:10.1146/annurev.phyto.45.062806.094338
  • HenriksonJCHooverARJoynerPMCichewiczRH. 2009. A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438, doi:10.1039/b819208a
  • HiderRCKongX. 2010. Chemistry and biology of siderophores. Nat Prod Rep 27:637–657, doi:10.1039/b906679a
  • JalalMAFLoveSvan der HelmD. 1988. Nα-Dimethylcoprogens three novel trihydroxamate siderophores from pathogenic fungi. Biol Met 1:4–8, doi:10.1007/BF01128011
  • Konetschny-RappSHuschkaHGWinkelmanneGJungG. 1988. High-performance liquid chromatography of siderophores from fungi. Biol Met 1:9–17, doi:10.1007/BF01128012
  • KwonHJOwaTHassigCAShimadaJSchreiberSL. 1998. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci USA 95:3356–3361.
  • MaiAEspositoMSbardellaGMassaS. 2001. A new facile and expeditious synthesis of N-hydroxy-N′-phenyloctanediamide, a potent inducer of terminal cytodifferentiation. Org Prep Proced Int 33:391–394, doi:10.1080/00304940109356608
  • MatsumotoMMatsutaniSSugitaKYoshidaHHayashiFTeruiYNakaiHUotaniNKawamuraYMatsumotoKShojiJIYoshidaT. 1992. Depudecin: a novel compound inducing the flat phenotype of NIH3T3 cells doubly transformed by ras- and src-oncogene, produced by Alternaria brassicicola. J Antbiot (Tokyo) 45:879–885, doi:10.7164/antibiotics.45.879
  • OideSMoederWKrasnoffSGibsonDHaasHYoshiokaKTurgeonBG. 2006. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic Ascomycetes. Plant Cell 18:2836–2853, doi:10.1105/tpc.106.045633
  • OtaniHKohnobeAKodamaMKohmotoK. 1998. Production of a host-specific toxin by germinating spores of Alternaria brassicicola. Physiol Mol Plant Pathol 52:285–295, doi:10.1006/pmpp.1998.0147
  • PedrasMSCChumalaPBJinWIslamMSHauckDW. 2009a. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394–402, doi:10.1016/j.phytochem.2009.01.005
  • PedrasMSCKhanAQSmithKCStettnerSL. 1997. Preparation, biotransformation and antifungal activity of methyl benzyldithiocarbamates. Can J Chem 75:825–828, doi:10.1139/v97-099
  • PedrasMSCMinicZAbdoliA. 2014. The phytoalexin camalexin induces fundamental changes in the proteome of Alternaria brassicicola different from those caused by brassinin. Fungal Biol 118:83–93, doi:10.1016/j.funbio.2013.11.005
  • PedrasMSCMinicZHossainS. 2012. Discovery of inhibitors and substrates of brassinin hydrolase: probing selectivity with dithiocarbamate bioisosteres. Bioorgan Med Chem 20:225–233, doi:10.1016/j.bmc.2011.11.009
  • PedrasMSCMinicZSarma-MamillapalleVK. 2009b. Substrate specificity and inhibition of brassinin hydrolases, detoxifying enzymes from the plant pathogens Leptosphaeria maculans and Alternaria brassicicola. FEBS J 276:7412–7428, doi:10.1111/j.1742-4658.2009.07457.x
  • PedrasMSCMontautSZahariaILGaiYWardDE. 2003. Transformation of the host-selective toxin destruxin B by wild crucifers: probing a detoxification pathway. Phytochemistry 64:957–963, doi:10.1016/S0031-9422(03)00444-8
  • PedrasMSCZahariaILGaiYZhouYWardDE. 2001. In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: avoiding cell death and overcoming the fungal invader. Proc Natl Acad Sci USA 98:747–752, doi:10.1073/pnas.98.2.747
  • ReisABoiteuxLS. 2010. Alternaria species infecting Brassicaceae in the Brazilian Neotropics: geographical distribution, host range and specificity. J Plant Pathol 92:661–668, doi:10.4454/jpp.v92i3.311
  • ScherlachKHertweckC. 2009. Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760, doi:10.1039/b821578b
  • StudtLSchmidtFJJahnLSieberCMKConnollyLRNiehausEMFreitagMHumpfHUTudzynskiB. 2013. Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl Environ Microbiol 79:7719–7734, doi:10.1128/AEM.01557-13
  • TudzynskiB. 2014. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:1–15, doi:10.3389/fmicb.2014.00656
  • VanderMolenKMDarveauxBAChenWLSwansonSMPearceCJOberliesNH. 2014. Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC Adv 4:18329–18335, doi:10.1039/C4RA00274A
  • VenkatasubbaiahPBaudoinABAMChiltonWS. 1992. Leaf spot of hemp dogbane caused by Stagonospora apocyni and its phytotoxins. J Phytopathol 135:309–316, doi:10.1111/j.1439-0434.1992.tb04316.x
  • WangHDentonJRDaviesHML. 2011. Sequential rhodium-, silver- and gold-catalyzed synthesis of fused dihydrofurans. Org Lett 13:4316–4319, doi:10.1021/ol2016548
  • WiemannPKellerNP. 2014. Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41:301–313, doi:10.1007/s10295-013-1366-3
  • WightWDKimKHLawrenceCBWaltonJD. 2009. Biosynthesis and role in virulence of the histone deacetylase inhibitor depudecin from Alternaria brassicicola. Mol Plant Microbe Interact 22:1258–1267, doi:10.1094/MPMI-22-10-1258
  • WilliamsRBHenriksonJCHooverARLeeAECichewiczRH. 2008. Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897, doi:10.1039/b804701d
  • ZuoLYaoSWangWDuanW. 2008. An efficient method for demethylation of aryl methyl ethers. Tetrahedron Lett 49:4054–4056, doi:10.1016/j.tetlet.2008.04.070

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.