334
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Geographic variation in mycangial communities of Xyleborus glabratus

, , , &
Pages 657-667 | Received 25 May 2015, Accepted 04 Mar 2016, Published online: 20 Jan 2017

Literature cited

  • BiedermannPHKlepzigKDTaborskyMSixDL. 2013. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiol Ecol 83:711–723, doi:10.1111/1574-6941.12026
  • CampbellAS. 2014. Characterizing pathogen-vector-host interactions in laurel wilt, a disease of avocado [doctoral dissertation]. Gainesville: Univ. Florida. 136 p.
  • CarrilloDDuncanREPloetzJNCampbellASPloetzRCPeñaJE. 2014. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62, doi:10.1111/ppa.12073
  • ClaassenVPZasoskiRJTylerBM. 1996. A method for direct soil extraction and PCR amplification of endomycorrhizal fungal DNA. Mycorrhiza 6:447–450, doi:10.1007/s005720050145
  • DreadenTJDavisJMde BeerZWPloetzRCSoltisPSWingfieldMJSmithJA. 2014. Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biol 118:970–978, doi:10.1016/j.funbio.2014.09.001
  • DupontJMagninSMartiABrousseM. 1999. Molecular tools for identification of Penicillium starter cultures used in the food industry. Int J Food Microbiol 49:109–118, doi:10.1016/S0168-1605(99)00055-0
  • EndohRSuzukiMOkadaGTakeuchiYFutaiK. 2011. Fungus symbionts colonizing the galleries of the ambrosia beetle Platypus quercivorus. Microb Ecol 62:106–120, doi:10.1007/s00248-011-9838-3
  • HarringtonTC. 1981. Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129, doi:10.2307/3759682
  • HarringtonTCAghayevaDNFraedrichSW. 2010. New combinations in Raffaelea, Ambrosiella and Hyalorhinocladiella and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 11:337–361, doi:10.5248/111.337
  • HarringtonTCFraedrichSWAghayevaDN. 2008. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404.
  • HarringtonTCFraedrichSW. 2010. Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus. Phytopathology 100:1118–1123, doi:10.1094/PHYTO-01-10-0032
  • HarringtonTCYunHYLuSSGotoHAghayevaDNFraedrichSW. 2011. Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1136, doi:10.3852/10-417
  • HoppleJVilgalysR. 1994. Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:96–107, doi:10.2307/3760723
  • HughesMASmithJAPloetzRCKendraPEMayfieldAEIIIHanulaJLHulcrJStelinskiLLCameronSRigginsJJCarrilloDRabagliaREickwortJPernasT. 2015. Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Prog, doi:10.1094/PHP-RP-15-0017
  • HulcrJRountreeNRDiamondSEStelinskiLLFiererNDunnRR. 2012. Mycangia of ambrosia beetles host communities of bacteria. Microb Ecol 64:784–793, doi:10.1007/s00248-012-0055-5
  • JustesenAFRidoutCJHovmøllerMS. 2002. The recent history of Puccinia striiformis f. sp. tritici in Denmark as revealed by disease incidence and AFLP markers. Plant Pathol 51:13–23, doi:10.1046/j.0032-0862.2001.00651.x
  • KajimuraHNaokiH. 1992. Dynamics of the fungal symbionts in the gallery system and the mycangia of the ambrosia beetle, Xylosandrus mutilatus (Blandford) (Coleoptera: Scolytidae) in relation to its life history. Ecol Res 7:107–117, doi:10.1007/BF02348489
  • KendraPEMontgomeryWSNiogretJDeyrupMAGuillénLEpskyND. 2012a. Xyleborus glabratus, X. affinis and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): electroantennogram responses to host-based attractants and temporal patterns in host-seeking flight. Environ Entomol 41:1597–1605, doi:10.1603/EN12164
  • KendraPEMontgomeryWSSanchezJSDeyrupMANiogretJEpskyND. 2012b. Method for collection of live redbay ambrosia beetles, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). Fla Entomol 95:513–516, doi:10.1653/024.095.0244
  • KendraPEMontgomeryWSNiogretJEpskyND. 2013. An uncertain future for American Lauraceae: a lethal threat from redbay ambrosia beetle and laurel wilt disease (a review). Am J Plant Sci 4:727–738, doi:10.4236/ajps.2013.43A092
  • ManerMLHanulaJLBramanSK. 2013. Evaluation of screen barriers on redbay trees to protect them from Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae) and distribution of initial attacks in relation to stem moisture content, diameter and height. J Econ Entomol 106:1693–1698, doi:10.1603/EC13125
  • Massoumi AlamoutiSTsuiCKBreuilC. 2009. Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res 8:822–835, doi:10.1016/j.mycres.2009.03.003
  • MayfieldAEIIICraneJHSmithJA. 2011. Laurel wilt: a threat to redbay, avocado and related trees in urban and rural landscapes. Univ. Florida IFAS extension: Publication No. HS1136.
  • PloetzRCHulcrJWingfieldMde BeerZW. 2013. Ambrosia and bark beetle-associated tree diseases: Black swan events in tree pathology? Plant Dis 97:856–872, doi:10.1094/PDIS-01-13-0056-FE
  • PloetzRCPérez-MartínezJMSmithJAHughesMDreadenTJInchSAFuY. 2012. Responses of avocado to laurel wilt caused by Raffaelea lauricola. Plant Pathol 61:801–808, doi:10.1111/j.1365-3059.2011.02564.x
  • PosadaD. 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256, doi:10.1093/molbev/msn083
  • SchneiderIARudinskyJA. 1969. Mycetangial glands and their seasonal changes in Gnathotrichus retusus and G. sulcatus. Ann Entomol Soc Am 62:39–43
  • SchochCLSeifertKAHuhndorfSRobertVSpougeJLAndréLWenC. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246, doi:10.1073/pnas.1117018109
  • SixDLBentzBJ. 2007. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Microbial Ecol 54:112–118, doi:10.1007/s00248-006-9178-x
  • SixDLWingfieldMJ. 2011. The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272, doi:10.1146/annurev-ento-120709-144839
  • SnowAMStansSE. 2001. Healing plants: medicine of the Florida Seminole indians. Gainesville: Univ. Press Florida. 176 p.
  • StamatakisA. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690, doi:10.1093/bioinformatics/btl446
  • SwinscowTVCampbellMJ. 2002. Correlation and regression. In: Statistics at square one. 10th ed. London: BMJ Books. p 119–132.
  • TedersooLTeeleJHortonBMAbarenkovKSuviTSaarIKõljalgU. 2008. Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490, doi:10.1111/j.1469-8137.2008.02561.x
  • WhiteTJBrunsTLeeSTaylorJ. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: InnisMAGelfandDHSninskyJJWhiteTJ, eds. PCR protocols: a guide to methods and applications. San Diego, California: Academic Press. p 315–322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.