481
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The kinetochore interaction network (KIN) of ascomycetes

Pages 485-505 | Received 19 Oct 2015, Accepted 23 Oct 2015, Published online: 20 Jan 2017

Literature cited

  • AlushinGMRameyVHPasqualatoSBallDAGrigorieffNMusacchioANogalesE. 2010. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467:805–10, doi:10.1038/nature09423
  • AmanoMSuzukiAHoriTBackerCOkawaKCheesemanIMFukagawaT. 2009. The CENP-S complex is essential for the stable assembly of outer kinetochore structure. J Cell Biol 186:173–82, doi:10.1083/jcb.200811028
  • AravamudhanPFelzer-KimIGurunathanKJoglekarAP. 2014. Assembling the protein architecture of the budding yeast kinetochore-microtubule attachment using FRET. Curr Biol 24:1437–46, doi:10.1016/j.cub.2014.05.014
  • BakerRERogersK. 2006. Phylogenetic analysis of fungal centromere H3 proteins. Genetics 174:1481–1492, doi:10.1534/genetics.106.062794
  • BarnhartMCKuichPHStellfoxMEWardJABassettEABlackBEFoltzDR. 2011. HJURP is a CENP-A chromatin assembly factor sufficient to form a functional de novo kinetochore. J Cell Biol 194:229–243, doi:10.1073/pnas.130189697
  • BasilicoFMaffiniSWeirJRPrumbaumDRojasAMZimniakTde AntoniAJeganathanSVossBvan GerwenSet al. 2014. The pseudo GTPase CENP-M drives human kinetochore assembly. eLife 3:e02978, doi:10.7554/eLife.02978.024
  • BeadleGW. 1932. A possible influence of the spindle fiber on crossing-over in Drosophila. Proc Natl Acad Sci U S A 18:160–165, doi:10.1073/pnas.18.2.160
  • BharadwajRQiWYuH. 2004. Identification of two novel components of the human NDC80 kinetochore complex. J Biol Chem 279:13076–13085, doi:10.1074/jbc.M310224200
  • BlackBEClevelandDW. 2011. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell 144:471–479, doi:10.1016/j.cell.2011.02.002
  • BlackBEJansenLEMaddoxPSFoltzDRDesaiABShahJVClevelandDW. 2007. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25: 309–322.
  • BockLJPagliucaCKobayashiNGroveRAOkuYShresthaKAlfieriCGolfieriCOldaniADal MaschioMet al. 2012. Cnn1 inhibits the interactions between the KMN complexes of the yeast kinetochore. Nat Cell Biol 14: 614–624, doi:10.1016/j.molcel.2006.12.018
  • BurrackLSApplenSEBermanJ. 2011. The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules. Curr Biol 21:889–896, doi:10.1016/j.cub.2011.04.002
  • CaldasGVDeLucaKFDeLucaJG. 2013. KNL1 facilitates phosphorylation of outer kinetochore proteins by promoting Aurora B kinase activity. J Cell Biol 203: 957–969, doi:10.1083/jcb.200806118
  • CamahortRLiBFlorensLSwansonSKWashburnMPGertonJL. 2007. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell 26:853–865, doi:10.1016/j.molcel.2007.05.013
  • CarrollCWMilksKJStraightAF. 2010. Dual recognition of CENP-A nucleosomes is required for centromere assembly. J Cell Biol 189:1143–1155, doi:10.1083/jcb.113.5.1091
  • CarrollCWSilvaMCGodekKMJansenLEStraightAF. 2009. Centromere assembly requires the direct recognition of CENP-A nucleosomes by CENP-N. Nat Cell Biol 11: 896–902.
  • CheesemanIMBrewCWolyniakMDesaiAAndersonSMusterNYatesJRHuffakerTCDrubinDGBarnesG. 2001a. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J Cell Biol 155: 1137–1145, doi:10.1038/ncb1899
  • CheesemanIMChappieJSWilson-KubalekEMDesaiA. 2006. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127:983–997.
  • CheesemanIMDesaiA. 2008. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 9:33–46, doi:10.1016/j.cell.2006.09.039
  • CheesemanIMEnquist-NewmanMMuller-ReichertTDrubinDGBarnesG. 2001b. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J Cell Biol 152:197–212.
  • CiferriCPasqualatoSScrepantiEVarettiGSantaguidaSDos ReisGMaiolicaAPolkaJDe LucaJGde WulfPet al. 2008. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133:427–439, doi:10.1083/jcb.146.2.415
  • ClarkeLAmstutzHFishelBCarbonJ. 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 83:8253–8257, doi:10.1073/pnas.83.21.8253
  • ClarkeLCarbonJ. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–509.
  • ClevelandDWMaoYSullivanKF. 2003. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112:407–421, doi:10.1038/287504a0
  • CorbettKDDesaiA. 2014. A new piece in the kinetochore jigsaw puzzle. J Cell Biol 206:457–459, doi:10.1016/j.cub.2010.12.039
  • CrooksGEHonGChandoniaJMBrennerSE. 2004. WebLogo: a sequence logo generator. Genome Res 14:1188–1190, doi:10.1101/gr.849004
  • deLucaKFLensSMDeLucaJG. 2011. Temporal changes in Hec1 phosphorylation control kinetochore-microtubule attachment stability during mitosis. J Cell Sci 124: 622–634, doi:10.1242/jcs.072629
  • DemirelPBKeyesBEChaterjeeMRemingtonCEBurkeDJ. 2012. A redundant function for the N-terminal tail of Ndc80 in kinetochore-microtubule interaction in Saccharomyces cerevisiae. Genetics 192: 753–756, doi:10.1534/genetics.112.143818
  • DingRMcDonaldKLMcIntoshJR. 1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J Cell Biol 120:141–151, doi:10.1083/jcb.120.1.141
  • DrinnenbergIAdeYoungDHenikoffSMalikHS. 2014. Recurrent loss of CenH3 is associated with independent transitions to holocentricity in insects. Elife 3, 10.7554/eLife.
  • DunleavyEMRocheDTagamiHLacosteNRay-GalletDNakamuraYDaigoYNakataniYAlmouzni-PettinottiG. 2009. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 137:485–497, doi:10.1016/j.cell.2009.02.040
  • EarnshawWCMigeonBR. 1985. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92: 290–296, doi:10.1007/BF00329812
  • FachinettiDFolcoHDNechemia-ArbelyYValenteLPNguyenKWongAJZhuQHollandAJDesaiAJansenLEet al. 2013. A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol 15:1056–1066, doi:10.1038/ncb2805
  • FalkSJGuoLYSekulicNSmoakEMManiTLogsdonGAGuptaKJansenLEvan DuyneGDVinogradovSAet al. 2015. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere. Science 348:699–703, doi:10.1126/science.1259308
  • FangJLiuYWeiYDengWYuZHuangLTengYYaoTYouQRuanHet al. 2015. Structural transitions of centromeric chromatin regulate the cell cycle-dependent recruitment of CENP-N. Genes Dev 29: 1058–1073, doi:10.1101/gad.259432.115
  • FlemmingW. 1882. Zellsubstanz, Kern und Zellteilung . Leipzig, Germany: Vogel.
  • FolcoHDCampbellCSMayKMEspinozaCAOegemaKHardwickKGGrewalSIDesaiA. 2015. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast. Curr Biol 25:348–356, doi:10.1016/j.cub.2014.11.060
  • FoleyEAKapoorTM. 2013. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 14:25–37, doi:10.1038/nrm3494
  • FoltzDRJansenLEBaileyAOYatesJR3rdBassettEAWoodSBlackBEClevelandDW. 2009. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell 137:472–484.
  • FoltzDRJansenLEBlackBEBaileyAOYatesJR3rdClevelandDW. 2006. The human CENP-A centromeric nucleosome-associated complex. Nat Cell Biol 8:458–469.
  • FujitaYHayashiTKiyomitsuTToyodaYKokubuAObuseCYanagidaM. 2007. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta and M18BP1. Dev Cell 12:17–30, doi:10.1038/ncb1397
  • FukagawaTEarnshawWC. 2014. The centromere: chromatin foundation for the kinetochore machinery. Dev Cell 30:496–508, doi:10.1016/j.devcel.2014.08.016
  • GaoQCourtheouxTGachetYTournierSHeX. 2010. A non-ring-like form of the Dam1 complex modulates microtubule dynamics in fission yeast. Proc Natl Acad Sci U S A 107:13330–13335, doi:10.1073/pnas.1004887107
  • GascoigneKETakeuchiKSuzukiAHoriTFukagawaTCheesemanIM. 2011. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–422, doi:10.1016/j.cell.2011.03.031
  • GhonganePKapanidouMAsgharAEloweSBolanos-GarciaVM. 2014. The dynamic protein Knl1 – a kinetochore rendezvous. J Cell Sci 127:3415–3423, doi:10.1242/jcs.149922
  • GonenSAkiyoshiBIadanzaMGShiDDugganNBigginsSGonenT. 2012. The structure of purified kinetochores reveals multiple microtubule-attachment sites. Nat Struct Mol Biol 19:925–929, doi:10.1038/nsmb.2358
  • GuimaraesGJDelucaJG. 2009. Connecting with Ska, a key complex at the kinetochore-microtubule interface. EMBO J 28:1375–1377, doi:10.1038/emboj.2009.124
  • GuimaraesGJDongYMcEwenBFDelucaJG. 2008. Kinetochore-microtubule attachment relies on the disordered N-terminal tail domain of Hec1. Curr Biol 18: 1778–1784.
  • HedgesSB. 2002. The origin and evolution of model organisms. Nat Rev Genet 3:838–349, doi:10.1016/j.cub.2008.08.012
  • HayashiTFujitaYIwasakiOAdachiYTakahashiKYanagidaM. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118:715–729, doi:10.1016/j.cell.2004.09.002
  • HerreroSTakeshitaNFischerR. 2011. The Aspergillus nidulans CENP-E kinesin motor KipA interacts with the fungal homolog of the centromere-associated protein CENP-H at the kinetochore. Mol Microbiol 80: 981–994, doi:10.1111/j.1365-2958.2011.07624.x
  • HeunPErhardtSBlowerMDWeissSSkoraADKarpenGH. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315, doi:10.1016/j.devcel.2006.01.014
  • HibbettDSBinderMBischoffJFBlackwellMCannonPFErikssonOEHuhndorfSJamesTKirkPMLuckingRet al. 2007. A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547, doi:10.1016/j.mycres.2007.03.004
  • HinshawSMHarrisonSC. 2013. An Iml3-Chl4 heterodimer links the core centromere to factors required for accurate chromosome segregation. Cell Rep 5:29–36, doi:10.1016/j.celrep.2013.08.036
  • HoKHTsuchiyaDOligerACLacefieldS. 2014. Localization and function of budding yeast CENP-A depends upon kinetochore protein interactions and is independent of canonical centromere sequence. Cell Rep 9:2027–33, doi:10.1016/j.celrep.2014.11.037
  • HoriTAmanoMSuzukiABackerCBWelburnJPDongYMcEwenBFShangWHSuzukiEOkawaKet al. 2008a. CCAN makes multiple contacts with centromeric DNA to provide distinct pathways to the outer kinetochore. Cell 135:1039–1052, doi:10.1016/j.cell.2008.10.019
  • HoriTFukagawaT. 2012. Establishment of the vertebrate kinetochores. Chromosome Res 20:547–561, doi:10.1007/s10577-012-9289-9
  • HoriTOkadaMMaenakaKFukagawaT. 2008b. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Mol Biol Cell 19: 843–854.
  • HornungPTrocPMalvezziFMaierMDemianovaZZimniakTLitosGLampertFSchleifferABrunnerMet al. 2014. A cooperative mechanism drives budding yeast kinetochore assembly downstream of CENP-A. J Cell Biol 206:509–524, doi:10.1038/ncb2515
  • HsuKSTodaT. 2011. Ndc80 internal loop interacts with Dis1/TOG to ensure proper kinetochore-spindle attachment in fission yeast. Curr Biol 21:214–220, doi:10.1016/j.cub.2010.12.048
  • IzutaHIkenoMSuzukiNTomonagaTNozakiNObuseCKisuYGoshimaNNomuraFNomuraNet al. 2006. Comprehensive analysis of the ICEN (interphase centromere complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11:673–684, doi:10.1111/j.1365-2443.2006.00969.x
  • JamesTCElginSC. 1986. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 6:3862–3872, doi:10.1128/MCB.6.11.3862
  • JankeCOrtizJTanakaTULechnerJSchiebelE. 2002. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J 21:181–193, doi:10.1093/emboj/21.1.181
  • JoglekarAPBloomKFinleyKLiuXWanYBermanJHeXSalmonEDBloomKS. 2008. Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J Cell Biol 181:587–594.
  • JoglekarAPBloomKSalmonED. 2009. In vivo protein architecture of the eukaryotic kinetochore with nanometer scale accuracy. Curr Biol 19:694–699, doi:10.1016/j.cub.2009.02.056
  • JoglekarAPBouckDCMolkJNBloomKSSalmonED. 2006. Molecular architecture of a kinetochore-microtubule attachment site. Nat Cell Biol 8:581–585, doi:10.1083/jcb.113.5.1091
  • KagawaNHoriTHokiYHosoyaOTsutsuiKSagaYSadoTFukagawaT. 2014. The CENP-O complex requirement varies among different cell types. Chromosome Res 22:293–303, doi:10.1007/s10577-014-9404-1
  • KangYHParkCHKimTSSoungNKBangJKKimBYParkJELeeKS. 2011. Mammalian polo-like kinase 1-dependent regulation of the PBIP1-CENP-Q complex at kinetochores. J Biol Chem 286:19744–19757, doi:10.1074/jbc.M111.224105
  • KerresAJakopecVFleigU. 2007. The conserved Spc7 protein is required for spindle integrity and links kinetochore complexes in fission yeast. Mol Biol Cell 18: 2441–2454, doi:10.1091/mbc.E06-08-0738
  • KiermaierEWoehrerSPengYMechtlerKWestermannS. 2009. A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nat Cell Biol 11:1109–1115, doi:10.1038/ncb1924
  • KimSYuH. 2015. Multiple assembly mechanisms anchor the KMN spindle checkpoint platform at human mitotic kinetochores. J Cell Biol 208:181–196, doi:10.1074/jbc.M804207200
  • KlareKWeirJRBasilicoFZimniakTMassimilianoLLudwigsNHerzogFMusacchioA. 2015. CENP-C is a blueprint for constitutive centromere-associated network assembly within human kinetochores. J Cell Biol 210:11–22, doi:10.1083/jcb.201412028.dv
  • KrizaicIWilliamsSJSanchezPRodriguez-CorsinoMStukenbergPTLosadaA. 2015. The distinct functions of CENP-C and CENP-T/W in centromere propagation and function in Xenopus egg extracts. Nucleus 6: 133–143, doi:10.1080/19491034.2014.1003509
  • LacefieldSLauDTMurrayAW. 2009. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat Cell Biol 11:1116–1120, doi:10.1038/ncb1925
  • LampertFHornungPWestermannS. 2010. The Dam1 complex confers microtubule plus end-tracking activity to the Ndc80 kinetochore complex. J Cell Biol 189: 641–649, doi:10.1083/jcb.200901036
  • LampertFMieckCAlushinGMNogalesEWestermannS. 2013. Molecular requirements for the formation of a kinetochore-microtubule interface by Dam1 and Ndc80 complexes. J Cell Biol 200:21–30.
  • Lara-GonzalezPWesthorpeFGTaylorSS. 2012. The spindle assembly checkpoint. Curr Biol 22:R966–R980.
  • LiaoWTSongLBZhangHZZhangXZhangLLiuWLFengYGuoBHMaiHQCaoSMet al. 2007. Centromere protein H is a novel prognostic marker for nasopharyngeal carcinoma progression and overall patient survival. Clin Cancer Res 13:508–514, doi:10.1158/1078-0432.CCR-06-1512
  • LiuDVaderGVromansMJLampsonMALensSM. 2009. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323:1350–1353, doi:10.1126/science.1167000
  • LogsdonGABarreyEJBassettEADeNizioJEGuoLYPanchenkoTDawicki-McKennaJMHeunPBlackBE. 2015. Both tails and the centromere-targeting domain of CENP-A are required for centromere establishment. J Cell Biol 208:521–531, doi:10.1038/emboj.2013.142
  • MaiolicaACittaroDBorsottiDSennelsLCiferriCTarriconeCMusacchioARappsilberJ. 2007. Structural analysis of multiprotein complexes by cross-linking, mass spectrometry and database searching. Mol Cell Proteomics 6:2200–2211, doi:10.1074/mcp.M700274-MCP200
  • MalvezziFLitosGSchleifferAHeuckAMechtlerKClausenTWestermannS. 2013. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J 32:409–423, doi:10.1038/emboj.2012.356
  • MalvezziFWestermannS. 2014. “Uno, nessuno e centomila”: the different faces of the budding yeast kinetochore”. Chromosoma 123:447–457.
  • MarstonALThamWHShahHAmonA. 2004. A genome-wide screen identifies genes required for centromeric cohesion. Science 303:1367–1370, doi:10.1126/science.1094220
  • MatsonDRDemirelPBStukenbergPTBurkeDJ. 2012. A conserved role for COMA/CENP-H/I/N kinetochore proteins in the spindle checkpoint. Genes Dev 26: 542–547, doi:10.1101/gad.184184.111
  • MaureJFKomotoSOkuYMinoAPasqualatoSNatsumeKClaytonLMusacchioATanakaTU. 2011. The Ndc80 loop region facilitates formation of kinetochore attachment to the dynamic microtubule plus end. Curr Biol 21:207–213, doi:10.1016/j.cub.2010.12.050
  • McClelandMLKallioMJBarrett-WiltGAKestnerCAShabanowitzJHuntDFGorbskyGJStukenbergPT. 2004. The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment. Curr Biol 14:131–137, doi:10.1016/j.cub.2003.12.058
  • McIntoshJRO’TooleEZhudenkovKMorphewMSchwartzCAtaullakhanovFIGrishchukEL. 2013. Conserved and divergent features of kinetochores and spindle microtubule ends from five species. J Cell Biol 200:459–474, doi:10.1083/jcb.201209154.dv
  • MeasdayVHaileyDWPotIGivanSAHylandKMCagneyGFieldsSDavisTNHieterP. 2002. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 16:101–113, doi:10.1101/gad.949302
  • MeraldiPMcAinshADRheinbayESorgerPK. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7:R23.
  • MillerSAJohnsonMLStukenbergPT. 2008. Kinetochore attachments require an interaction between unstructured tails on microtubules and Ndc80(Hec1). Curr Biol 18(22):1785–1791, doi:10.1016/j.cub.2008.11.007
  • MirandaJJde WulfPSorgerPKHarrisonSC. 2005. The yeast DASH complex forms closed rings on microtubules. Nat Struct Mol Biol 12:138–143, doi:10.1038/nsmb896
  • MirandaJJKingDSHarrisonSC. 2007. Protein arms in the kinetochore-microtubule interface of the yeast DASH complex. Mol Biol Cell 18:2503–2510.
  • MishraPKAuWCChoyJSKuichPHBakerREFoltzDRBasraiMA. 2011. Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells. PLoS Genet 7:e1002303, doi:10.1091/mbc.E07-02-0135
  • MizuguchiGXiaoHWisniewskiJSmithMMWuC. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129:1153–1164, doi:10.1016/j.cell.2007.04.026
  • MoreeBMeyerCBFullerCJStraightAF. 2011. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly. J Cell Biol 194:855–871, doi:10.1016/j.molcel.2009.01.017
  • MoroiYPeeblesCFritzlerMJSteigerwaldJTanEM. 1980. Autoantibody to centromere (Kinetochore) in scleroderma sera. Proc Natl Acad Sci USA-Biological Sciences 77:1627–1631, doi:10.1073/pnas.77.3.1627
  • MusacchioACilibertoA. 2012. The spindle-assembly checkpoint and the beauty of self-destruction. Nat Struct Mol Biol 19:1059–1061, doi:10.1038/nsmb.2429
  • MythreyeKBloomKS. 2003. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J Cell Biol 160:833–843, doi:10.1002/yea.320101310
  • NagpalHHoriTFurukawaASugaseKOsakabeAKurumizakaHFukagawaT. 2015. Dynamic changes in the CCAN organization through CENP-C during cell-cycle progression. Mol Biol Cell 26:3768–3776, doi:10.1091/mbc.E15-07-0531
  • NishinoTRagoFHoriTTomiiKCheesemanIMFukagawaT. 2013. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J 32: 424–436, doi:10.1038/emboj.2012.348
  • NishinoTTakeuchiKGascoigneKESuzukiAHoriTOyamaTMorikawaKCheesemanIMFukagawaT. 2012. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148: 487–501.
  • OkadaMCheesemanIMHoriTOkawaKMcLeodIXYatesJRIIIDesaiAFukagawaT. 2006. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nat Cell Biol 8:446–457, doi:10.1016/j.cell.2011.11.061
  • OrtizJStemmannORankSLechnerJ. 1999. A putative protein complex consisting of Ctf19, Mcm21 and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev 13:1140–1155, doi:10.1101/gad.13.9.1140
  • PagliucaCDraviamVMMarcoESorgerPKDe WulfP. 2009. Roles for the conserved spc105p/kre28p complex in kinetochore-microtubule binding and the spindle assembly checkpoint. PLoS One 4(10):e7640.
  • PalmerDKO’DayKWenerMHAndrewsBSMargolisRL. 1987. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815, doi:10.1371/journal.pone.0007640.s005
  • PerpelescuMFukagawaT. 2011. The ABCs of CENPs. Chromosoma 120:425–446, doi:10.1007/s00412-011-0330-0
  • PetrovicAMosalagantiSKellerJMattiuzzoMOverlackKKrennVde AntoniAWohlgemuthSCecatielloVPasqualatoSet al. 2014. Modular assembly of RWD domains on the Mis12 complex underlies outer kinetochore organization. Mol Cell 53:591–605, 10.1016/j.molcel.2014.01.019
  • PetrovicAPasqualatoSDubePKrennVSantaguidaSCittaroDMonzaniSMassimilianoLKellerJTarriconeAet al. 2010. The MIS12 complex is a protein interaction hub for outer kinetochore assembly. J Cell Biol 190: 835–852, doi:10.1083/jcb.200804170
  • PidouxALChoiESAbbottJKLiuXKaganskyACastilloAGHamiltonGLRichardsonWRappsilberJHeXet al. 2009. Fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Mol Cell 33:299–311, doi:10.1016/j.molcel.2009.01.019
  • PotIMeasdayVSnydsmanBCagneyGFieldsSDavisTNMullerEGHieterP. 2003. Chl4p and iml3p are two new members of the budding yeast outer kinetochore. Mol Biol Cell 14:460–476, doi:10.1091/mbc.E02-08-0517
  • PowersAFFranckADGestautDRCooperJGracyzkBWeiRRWordemanLDavisTNAsburyCL. 2009. The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 136:865–875, doi:10.1016/j.cell.2008.12.045
  • PrzewlokaMRVenkeiZBolanos-GarciaVMDebskiJDadlezMGloverDM. 2011. CENP-C is a structural platform for kinetochore assembly. Curr Biol 21:399–405, doi:10.1016/j.cub.2011.02.005
  • RagoFGascoigneKECheesemanIM. 2015. Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr Biol 25:671–677, doi:10.1016/j.cub.2015.01.059
  • RaviMKwongPNMenorcaRMValenciaJTRamahiJSStewartJLTranRKSundaresanVComaiLChanSW. 2010. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186:461–471, doi:10.1534/genetics.110.120337
  • RibeiroSAVagnarelliPDongYHoriTMcEwenBFFukagawaTFlorsCEarnshawWC. 2010. A superresolution map of the vertebrate kinetochore. Proc Natl Acad Sci U S A 107:10484–10489, doi:10.1073/pnas.1002325107
  • Sanchez-PerezIRenwickSJCrawleyKKarigIBuckVMeadowsJCFranco-SanchezAFleigUTodaTMillarJB. 2005. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J 24:2931–2943, doi:10.1038/sj.emboj.7600761
  • Sanchez-PulidoLPidouxALPontingCPAllshireRC. 2009. Common ancestry of the CENP-A chaperones Scm3 and HJURP. Cell 137:1173–1174, doi:10.1016/j.cell.2009.06.010
  • SanyalKCarbonJ. 2002. The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission. Proc Natl Acad Sci U S A 99:12969–12974, doi:10.1073/pnas.162488299
  • SarkarSShenoyRTDalgaardJZNewnhamLHoffmannEMillarJBArumugamP. 2013. Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I. PLoS Genet 9:e1003610.
  • SchleifferAMaierMLitosGLampertFHornungPMechtlerKWestermannS. 2012. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol 14:604–613, doi:10.1038/ncb2493
  • SchmitzbergerFHarrisonSC. 2012. RWD domain: a recurring module in kinetochore architecture shown by a Ctf19-Mcm21 complex structure. EMBO Rep 13: 216–22, doi:10.1038/embor.2012.1
  • SchotanusKSoyerJLConnollyLRGrandaubertJHappelPSmithKMFreitagMStukenbrockEH. 2015. Histone modifications rather than the novel regional centromeres of Zymoseptoria tritici distinguish core and accessory chromosomes. Epigenetics Chromatin 8:41, doi:10.1186/s13072-015-0033-5
  • ScottKCSullivanBA. 2014. Neocentromeres: a place for everything and everything in its place. Trends Genet 30:66–74, doi:10.1016/j.tig.2013.11.003
  • ScrepantiEDe AntoniAAlushinGMPetrovicAMelisTNogalesEMusacchioA. 2011. Direct binding of Cenp-C to the Mis12 complex joins the inner and outer kinetochore. Curr Biol 21:391–398, doi:10.1016/j.cub.2010.12.039
  • ShiroiwaYHayashiTFujitaYVillar-BrionesAIkaiNTakedaKEbeMYanagidaM. 2011. Mis17 is a regulatory module of the Mis6-Mal2-Sim4 centromere complex that is required for the recruitment of CenH3/CENP-A in fission yeast. PLoS One 6:e17761.
  • SmithKMGalazkaJMPhatalePAConnollyLRFreitagM. 2012. Centromeres of filamentous fungi. Chromosome Res 20:635–656, doi:10.1007/s10577-012-9290-3
  • SmithKMPhatalePASullivanCMPomraningKRFreitagM. 2011. Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol Cell Biol 31: 2528–2542, doi:10.1371/journal.pone.0017761.s005
  • StolerSKeithKCCurnickKEFitzgerald-HayesM. 1995. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis Genes Dev 9:573–586.
  • StolerSRogersKWeitzeSMoreyLFitzgerald-HayesMBakerRE. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A 104:10571–10576, doi:10.1073/pnas.0705801104
  • SundinLJGuimaraesGJDelucaJG. 2011. The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol Biol Cell 22:759–768, doi:10.1091/mbc.E10-08-0671
  • SuzukiABadgerBLSalmonED. 2015. A quantitative description of Ndc80 complex linkage to human kinetochores. Nat Commun 6:8161, doi:10.1038/ncomms9161
  • TachiwanaHMullerSBlumerJKlareKMusacchioAAlmouzniG. 2015. HJURP involvement in de novo CenH3(CENP-A) and CENP-C recruitment. Cell Rep 11:22–32, doi:10.1016/j.celrep.2015.03.013
  • TakahashiKChenESYanagidaM. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219, doi:10.1126/science.288.5474.2215
  • TalbertPBBrysonTDHenikoffS. 2004. Adaptive evolution of centromere proteins in plants and animals. J Biol 3:18, doi:10.1186/jbiol11
  • TanakaKChangHLKagamiAWatanabeY. 2009. CENP-C functions as a scaffold for effectors with essential kinetochore functions in mitosis and meiosis. Dev Cell 17: 334–343, doi:10.1016/j.devcel.2009.08.004
  • ThakurJSanyalK. 2011. The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere. Eukaryot Cell 10:1295–1305, doi:10.1128/EC.05093-11
  • ThakurJTalbertPBHenikoffS. 2015. Inner kinetochore protein interactions with regional centromeres of fission yeast. Genetics 201:543–561.
  • ThapaKSOldaniAPagliucaCde WulfPHazbunTR. 2015. The Mps1 kinase modulates the recruitment and activity of Cnn1CENP-T at Saccharomyces cerevisiae kinetochores. Genetics 200:79–90, doi:10.1534/genetics.115.179788
  • TienJFUmbreitNTGestautDRFranckADCooperJWordemanLGonenTAsburyCLDavisTN. 2010. Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B. J Cell Biol 189:713–723, doi:10.1038/nature04409
  • TomonagaTMatsushitaKIshibashiMNezuMShimadaHOchiaiTYodaKNomuraF. 2005. Centromere protein H is up-regulated in primary human colorectal cancer and its overexpression induces aneuploidy. Cancer Res 65:4683–4689, doi:10.1158/0008-5472.CAN-04-3613
  • TooleyJGMillerSAStukenbergPT. 2011. The Ndc80 complex uses a tripartite attachment point to couple microtubule depolymerization to chromosome movement. Mol Biol Cell 22:1217–1226, doi:10.1091/mbc.E10-07-0626
  • UmbreitNTMillerMPTienJFOrtolaJCGuiLLeeKKBigginsSAsburyCLDavisTN. 2014. Kinetochores require oligomerization of Dam1 complex to maintain microtubule attachments against tension and promote biorientation. Nat Commun 5:4951, doi:10.1038/ncomms5951
  • VleugelMOmerzuMGroenewoldVHaddersMALensSMKopsGJ. 2015. Sequential multisite phospho-regulation of KNL1-BUB3 interfaces at mitotic kinetochores. Mol Cell 57:824–835, doi:10.1016/j.molcel.2014.12.036
  • WangHWLongSCiferriCWestermannSDrubinDBarnesGNogalesE. 2008. Architecture and flexibility of the yeast Ndc80 kinetochore complex. J Mol Biol 383:894–903, doi:10.1016/j.jmb.2008.08.077
  • WeiRRAl-BassamJHarrisonSC. 2007. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 14:54–59, doi:10.1038/nsmb1186
  • WeiRRSorgerPKHarrisonSC. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci U S A 102:5363–5367.
  • WelburnJPGrishchukELBackerCBWilson-KubalekEMYatesJRIIICheesemanIM. 2009. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev Cell 16:374–385, doi:10.1016/j.devcel.2009.01.011
  • WelburnJPVleugelMLiuDYatesJRIIILampsonMAFukagawaTCheesemanIM. 2010. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol Cell 38: 383–392.
  • WestermannSAvila-SakarAWangHWNiederstrasserHWongJDrubinDGNogalesEBarnesG. 2005. Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol Cell 17:277–290, doi:10.1016/j.molcel.2010.02.034
  • WestermannSSchleifferA. 2013. Family matters: structural and functional conservation of centromere-associated proteins from yeast to humans. Trends Cell Biol 23:260–269.
  • WiggePAKilmartinJV. 2001. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152:349–360, doi:10.1016/j.tcb.2013.01.010
  • YaginumaYYoshimotoMEguchiATokudaATakahashiS. 2015. The human papillomavirus18 E7 protein inhibits CENP-C binding to alpha-satellite DNA. Virus Res 205: 27–32, doi:10.1016/j.virusres.2015.04.019
  • YamagishiYSakunoTGotoYWatanabeY. 2014. Kinetochore composition and its function: lessons from yeasts. FEMS Microbiol Rev 38:185–200, doi:10.1111/1574-6976.12049
  • ZhangGKelstrupCDHuXWKaas HansenMJSingletonMROlsenJVNilssonJ. 2012. The Ndc80 internal loop is required for recruitment of the Ska complex to establish end-on microtubule attachment to kinetochores. J Cell Sci 125:3243–3253, doi:10.1242/jcs.104208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.