346
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina

, , , , , & show all
Pages 646-656 | Received 18 Sep 2015, Accepted 16 Mar 2016, Published online: 20 Jan 2017

Literature cited

  • Abdel-HameedMBertrandRPiercey-NormoreMDSorensenJL. 2016. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus. Fungal Biol, doi:10.1016/j.funbio.2015.10.009
  • ArmaleoDSunXCulbersonC. 2011. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103:741–754, doi:10.3852/10-335
  • AthukoralaSNPHuebnerEPiercey-NormoreMD. 2014. Identification and comparison of the three early stages of resynthesis for the lichen, Cladonia rangiferina. Can J Microbiol 60:41–52, doi:10.1139/cjm-2013-0313
  • AthukoralaSNPPiercey-NormoreMD. 2014. Effect of temperature and pH on the resynthesis of compatible partners of the lichen, C. rangiferina. Symbiosis 64:87–93, doi:10.1007/s13199-014-0307-x
  • AthukoralaSNPPiercey-NormoreMD. 2014. Recognition and defense-related gene expression at three resynthesis stages in lichen symbionts. Can J Microbiol 61:1–12, doi:10.1139/cjm-2014-0470
  • BischoffHHBoldHC. 1963. Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Press 6318:1–95.
  • BohleKJungebloudAGöckeYDalpiazACordesCHornHHempelDC. 2007. Selection of reference genes for normalization of specific gene quantification data of Aspergillus niger. J Biotechnol 132:353–358, doi:10.1016/j.jbiotec.2007.08.005
  • BoustieJGrubeM. 2007. Lichens—a promising source of bioactive secondary metabolites. Plant Genet Resour 3:273–287, doi:10.1079/PGR200572
  • BrunauerGHagerAGrubeMTurkRStocker-WörgötterE. 2007. Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiol Biochem 45:146–151, doi:10.1016/j.plaphy.2007.01.004
  • BrunauerGHagerAKrautgartnerWDTürkRStocker-WörgötterE. 2006. Experimental studies on Lecanora rupicola (L.) Zahlbr.: chemical and microscopical investigations of the mycobiont and resynthesis stages. Lichenologist 38:577–585, doi:10.1017/S0024282906005895
  • CollinsCRFarrarJF. 1978. Structural resistance to mass transfer in the lichen Xanthoria parietina. New Phytologist 81:71–83, doi:10.1111/j.1469-8137.1978.tb01605.x
  • CrittendenPDPorterN. 1991. Lichen-forming fungi: potential sources of novel metabolites. Trends Biotechnol 9:409–414, doi:10.1016/0167-7799(91)90141-4
  • CulbersonCF. 1970. Chemical and botanical guide to lichen products. Bryologist 2:177–377, doi:10.2307/3241261
  • CulbersonCFArmaleoD. 1992. Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp Mycol 16:52–63, doi:10.1016/0147-5975(92)90041-O
  • DoeringMPiercey-NormoreMD. 2009. Genetically divergent algae an epiphytic lichen community on Jack pine in Manitoba. Lichenologist 41:69–80, doi:10.1017/S0024282909008111
  • ElixJA. 1996. Biochemistry and secondary metabolites. In: NashTHIII, ed. Lichen biology. Cambridge, UK: Cambridge Univ. Press. p. 154–180.
  • ElixJAStocker-WörgötterE. 2008. Biochemistry and secondary metabolites. In: NashTHIII, ed. Lichen biology. Cambridge, UK: Cambridge Univ. Press. p. 104–133.
  • ElshobaryMEOsmanMEHAbushadyAMPiercey-NormoreMD. 2015. Comparison of lichen-forming cyanobacterial and green algal photobionts with free-living algae. Cryptogamie Algologie 36:81–100, doi:10.7872/crya.v36.iss1.2015.81
  • FahseltD. 1994. Secondary biochemistry of lichens. Symbiosis 16:117–165.
  • FelsensteinJ. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791, doi:10.2307/2408678
  • FontaineKBeckAStocker-WörgötterEPiercey-NormoreMD. 2012. Photobiont relationships and phylogenetic history of Dermatocarpon luridum var. luridum and related Dermatocarpon species. Plants 1:39–60, doi:10.3390/plants1020039
  • GoldsmithSJThomasMAGriesC. 1997. A new technique for photobiont culturing and manipulation. Lichenologist 29:559–569, doi:10.1017/S0024282997000698
  • GrubeMDepriestPTGargasAHafellnerJ. 1995. DNA isolation from lichen ascomata. Mycol Res 99:1321–1324, doi:10.1016/S0953-7562(09)81215-X
  • HamadaN. 1993. Effects of osmotic culture conditions on isolated lichen mycobionts. Bryologist 96:569–572, doi:10.2307/3243987
  • HillDJAhmadjianV. 1972. Relationship between carbohydrate movement and symbiosis in lichens with green algae. Planta 103:267, doi:10.1007/BF00386850
  • HopwoodDA. 1997. Genetic contributions to understanding polyketide synthases. Chem Rev 97:2465–2498, doi:10.1021/cr960034i
  • HuneckS. 1999. The significance of lichens and their metabolites. Naturwissenschaften 86:559–570, doi:10.1007/s001140050676
  • HuneckSYoshimuraI. 1996. Identification of lichen substances. Berlin: Springer. p 168–183.
  • JonesDTTaylorWRThorntonJM. 1992. The rapid generation of mutation data matrices from protein sequences. Compute Appl Biosci 8:275–282, doi:10.1093/bioinformatics/8.3.275
  • KimJAHongSGCheongYHKohYJHurJS. 2012. A new reducing polyketide synthase gene from the lichen-forming fungus Cladonia metacorallifera. Mycologia 104:362–370, doi:10.3852/11-001
  • KinoshitaYYamamotoYKurokawaTYoshimuraI. 2001. Influences of nitrogen sources on usnic acid production in a cultured mycobiont of the lichen Usnea hirta (L.) Wigg. Japan Soc Biosci Biotechnol Agrochem 65: 1900–1902, doi:10.1271/bbb.65.1900
  • LarkinMABlackshieldsGBrownNPChennaRMcGettiganPAMcWilliamHValentinFWallaceIMWilmALopezRThompsonJDGibsonTJHigginsDG. 2007. Clustal W and Clustal X 2.0. Bioinformatics 23:2947–2948, doi:10.1093/bioinformatics/btm404
  • LlanosAFrancoisJMParrouJL. 2015. Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi. BMC Genomics 16:71, doi:10.1186/s12864-015-1224-y
  • ManojlovicNTVasiljevicPJMaskovicPZ. 2012. Chemical composition and antioxidant activity of lichen Toninia candida. Br J Pharmacognosy 22:291–298, doi:10.1590/s0102-695x2011005000184
  • MiaoVCoeffet-LeGalMFBrownDSinnemannSDonaldsonGDaviesJ. 2001. Genetic approaches to harvesting lichen products. Trends Biotechnol 19:349–355, doi:10.1016/S0167-7799(01)01700-0
  • MiyagiMYokoyamaHHibiT. 2007. Sugar microanalysis by HPLC with benzoylation: improvement via introduction of a C-8 cartridge and a high efficiency ODS column. J Chromatography B 854:286–290, doi:10.1016/j.jchromb.2007.04.044
  • MolinaMStocker-WörgötterETürkTVicenteC. 1997. Axenic culture of the mycobiont of Xanthoria parietina in different nutritive media: effect of carbon source in spore germination. Endocytobiosis Cell Res 12:103–109.
  • MolnarKFarkasE. 2010. Current results on biological activities of lichen secondary metabolites Zeitschrift fur Naturforschung—Section. J Biosci 65:157–173.
  • MooreD. 1998. Fungal morphogenesis. Cambridge, UK: Cambridge Univ. Press. 469 p.
  • MüllerK. 2001. Pharmaceutically relevant metabolites from lichens. Appl Environ Microbiol 56:9–16, doi:10.1007/s002530100684
  • NeiMKumaS. 2000. Molecular evolution and phylogenetics. New York: Oxford Univ. Press. 333 p.
  • OksanenI. 2006. Ecological and biotechnological aspects of lichens. Appl Microbiol Biotechnol 73:723–734, doi:10.1007/s00253-006-0611-3
  • PalmqvistKDahlmanLHonssonANashTHIII. 2008. The carbon economy of lichens. In: NashTHIII, ed. Lichen biology. Cambridge, UK: Cambridge Univ. Press. p. 182–215.
  • PalmqvistKDahlmanLValladaresFTehlerASanchoLGMattsonJE. 2002. CO2 exchange and thallus nitrogen across 75 contrasting lichen associations from different climate zones. Oecologia 133:295–306, doi:10.1007/s00442-002-1019-0
  • Piercey-NormoreMD. 2004. Selection of algal partners by lichen fungi and patterns of variation for three species of Cladonia. Can J Bot 82:947–961, doi:10.1139/b04-084
  • RaffaelloTAsiegbuFO. 2013. Evaluation of potential reference genes for use in gene expression studies in the conifer pathogen (Heterobasidion annosum). Mol Biol Rep 40:4605–4611, doi:10.1007/s11033-013-2553-z
  • RichardsonDHSHillDJSmithDC. 1968. Lichen physiology XI. The role of the alga in determining the pattern of carbohydrate movement between lichen symbionts. New Phytol 67:469–486, doi:10.1111/j.1469-8137.1968.tb05476.x
  • SAS/JMP. 2012. SAS Campus Drive, Building T, Cary, North Carolina 27513-2414.
  • ShiBJNieXHChenLZLiuYLTaoWY. 2007. Anticancer activities of a chemically sulfated polysaccharide obtained from Grifola frondosa and its combination with 5-fluorouracil against human gastric carcinoma cells. Carbo Polymer 68:687–692, doi:10.1016/j.carbpol.2006.08.003
  • SolhaugKAGauslaaY. 2004. Photosynthates stimulate the UV-B induced fungal anthraquinone synthesis in the foliose lichen Xanthoria parietina. Plant Cell Environ 27:167–176, doi:10.1111/j.1365-3040.2003.01129.x
  • Stocker-WörgötterE. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing polyketide and shikimate metabolite production and PKS genes. Nat Prod Rep 25:188–200, doi:10.1039/B606983P
  • Stocker-WörgötterE. 2015. Biochemical diversity and ecology of lichen-forming fungi: lichen substances, chemosyndromic variation and origin of polyketide type metabolites (biosynthetic pathways). In: UpretiDKDivakarPKShuklaVBajpaiR, eds. Recent advances in lichenology: modern methods and approaches in lichen systematics and culture techniques. Vol. 2. Berlin, Heidelberg: Springer. p. 161–179.
  • Stocker-WörgötterEElixJA. 2002. Secondary chemistry of cultured mycobionts: formation of a complete chemosyndrome by the lichen fungus of Lobaria spathulata. Lichenologist 34:351–359, doi:10.1006/lich.2002.0395
  • TakenagaYHamadaNTanahashiT. 2005. Monomeric and dimeric dibenzofurans from cultured mycobionts of Lecanora iseana. Phytochemistry 66:665–668, doi:10.1016/j.phytochem.2004.12.031
  • TakenagaYHamadaNTanahashiTNagakuraNItohAHamadaN. 2004. Three isocoumarins and a dibenzofuran from the cultured lichen mycobiont of Pyrenula sp. Phytochemistry 65:3119–3123, doi:10.1016/j.phytochem.2004.09.011
  • TamuraKStecherGPetersonDFilipskiAKumarS. 2013. MEGA 6: molecular evolutionary genetics analysis. Mol Biol Evol 30:2725–2729, doi:10.1093/molbev/mst197
  • TanahashiTTakenakaYIkutaYTaniKNagakuraNHamadaN. 1999. Xanthones from the cultured lichen mycobionts of Pyrenula japonica and Pyrenula pseudobufonia. Phytochemistry 52:401–405, doi:10.1016/S0031-9422(99)00235-6
  • TanahashiTTakenakaYNagakuraNHamadaN. 2003. 6H-Dibenzo [b,d]pyran-6-one derivatives from the cultured lichen mycobionts of Graphis spp. and their biosynthetic origin. Phytochemistry 62:71–75, doi:10.1016/S0031-9422(02)00402-8
  • ThüsHMuggiaLPérez-OrtegaSFavero-LongoSJonesonSO’BrienHNelsenMPDuque-ThüsRGrubeMFriedlTBrodieJAndrewCJLückingRLutzoniFGueidanC. 2011. Revisiting photobiont diversity in the lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46:399–415, doi:10.1080/09670262.2011.629788
  • TimsinaBAHausnerGPiercey-NormoreMD. 2014. Evolution of ketosynthase domains of polyketide synthase genes in the Cladonia chlorophaea species complex (Cladoniaceae). Fungal Biol 118: 896–909, doi:10.1016/j.funbio.2014.08.001
  • ValarmathiRHariharanGNVenkataramanGParidaA. 2009. Characterization of a non-reducing polyketide synthase gene from the lichen Dirinaria applanata. Phytochemistry 70:721–729, doi:10.1016/j.phytochem.2009.04.007
  • WangYKimJACheongYJoshiYKohYHurJS. 2011. Isolation and characterization of a reducing polyketide synthase gene from the lichen-forming fungus Usnea longissima. J Microbiol 49:473–480, doi:10.1007/s12275-011-0362-4
  • WangYKimJACheongYKohYHurJS. 2012. Isolation and characterization of a non-reducing polyketide synthase gene from the lichen-forming fungus Usnea longissima. Mycol Prog 11:75–83, doi:10.1007/s11557-010-0730-1
  • WangYLiuBZhangXZhouQZhangTLiHYuYZhangXHaoXWangMWangLWeiJ. 2014. Genome characteristics reveal the impact of lichenization on the lichen-forming fungus Endocarpon pusillum Hedwig (Verrucariales, Ascomycota). BMC Genomics 15:34, doi:10.1186/1471-2164-15-34
  • WastlhuberRLoosE. 1996. Differences between cultured and freshly isolated cyanobiont from Peltigera is their symbiosis-specific regulation of glucose carrier. Lichenologist 28:67–68, doi:10.1017/s0024282996000084
  • YamamotoY. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenology 1:11–22.
  • YamamotoYHamadeRKonoshitaYHiguchiMYoshimuraISekiyaJYamadaY. 1994. Biological approaches using lichen-derived cultures—growth and primary metabolism. Symbiosis 16:203–217.
  • YoshimuraIKurokawaTKinoshitaYYamamotoYMiyawakiH. 1994. Lichen substances in cultured lichens. J Hattori Bot Lab 76:249–261.
  • ZarroukC. 1966. Contribution a l’etude d’une cyanophycee: influence de divers facteurs physique et chimiques sur la croissance et photosynthese de Spirulina maxima Geitler [doctoral dissertation]. Univ. Paris Press.
  • Zhen-yuanNJin-IanXLevertJ. 2002. Fraction and characterization of polysaccharides from cyanobacterium Spirulina (Arthrospira) maxima in nitrogen-limited batch culture. J Central S Univ Technol 9:81–86, doi:10.1007/s11771-002-0047-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.