354
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Isotopic evidence indicates saprotrophy in post-fire Morchella in Oregon and Alaska

, , &
Pages 638-645 | Received 07 Oct 2015, Accepted 10 Feb 2016, Published online: 20 Jan 2017

Literature cited

  • BoeckxPPaulinoLOyarzúnCCleemputOVGodoR. 2005. Soil δ15N patterns in old-growth forests of southern Chile as integrator for N-cycling. Isot Environ Health Stud 41:249–259, doi:10.1080/10256010500230171
  • BuscotF. 1993. Synthesis of two types of association between Morchella esculenta and Picea abies under controlled culture conditions. J Plant Physiol 141:12–17, doi:10.1016/S0176-1617(11)80845-X
  • BuscotFKottkeI. 1990. The association between living roots and ascocarps of Morchella rotunda Boudier with roots of Picea abies (L.) Karst. New Phytol 116:425–430, doi:10.1111/j.1469-8137.1990.tb00528x
  • BrockTD. 1951. Studies on the nutrition of Morchella esculenta Fries. Mycologia 43:402–422, doi:10.2307/3755649
  • ClaridgeAWTrappeJMHansenK. 2009. Do fungi have a role as soil stabilizers and remediators after forest fire? For Ecol Manage 257:1063–1069, doi:10.1016/j.foreco.2008.11.011
  • DahlstromJLSmithJEWeberNS. 2000. Mycorrhiza-like interaction by Morchella with species of the Pinaceae in pure culture synthesis. Mycorrhiza 9:279–285, doi:10.1007/pl00009992
  • DuX-HZhaoQYangZL. 2015. A review on research advances, issues and perspectives of morels. Mycology 106:78–85, doi:10.1080/21501203.2015.1016561
  • FujimuraKESmithJEHortonTRWeberNSSpataforaJW. 2005. Pezizalean mycorrhizas and sporocarps in ponderosa pine (Pinus ponderosa) after prescribed fires in eastern Oregon, USA. Mycorrhiza 15:79–86, doi:10.1007/s00572-004-0303-8
  • GaudinksiJBTrumboreSEDavidsonEA. 2010. Emergence of morel (Morchella) and pixie cup (Geopyxis carbonaria) ascocarps in response to the intensity of forest floor combustion during a wildfire. Mycologia 102:766–773, doi:10.3852/08-096
  • GaudinksiJBTrumboreSEDavidsonEACookACMarkewitzDRichterDD. 2001. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon. Oecologia 129:420–429, doi:10.1007/s004420100746
  • GriffithGWRoderickKGrahamACaustonDR. 2012. Sward management influences fruiting of grassland basidiomycete fungi. Biol Conserv 145:234–240, doi:10.1016/j.biocon.2011.11.010
  • HansenKPerryBADranginisAWPfisterDH. 2013. A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Mol Phylog Evol 67:311–335, doi:10.1016/j.vmpev.2013.01.014
  • HarringtonFAPfisterDHPotterDDonoghueMJ. 1999. Phylogenetic studies within the Pezizales I. 18S rRNA sequence data and classification. Mycologia 91:41–50, doi:10.2307/3761192
  • HobbieEA. 2005. Using isotopic tracers to follow carbon and nitrogen cycling of fungi. In: DightonJOudemansPWhiteJ, eds. The fungal community: its organization and role in the ecosystem. Marcel Dekker. p. 361–381, doi:10.1201/9781420027891.ch18
  • HobbieEAHofmockelKSvan DiepenLTLilleskovEAOuimetteAPFinziAC. 2014a. Fungal carbon sources in a pine forest: evidence from a 13C-labeled global change experiment. Fung Ecol 10:91–100, doi:10.1016/j.funeco.2013.11.001
  • HobbieEAHögbergP. 2012. Nitrogen isotopes link ectomycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382, doi:10.1111/j.1469-8137.2012.04300.x
  • HobbieEASánchezFSRygiewiczPT. 2012. Controls of isotopic patterns in saprotrophic and ectomycorrhizal fungi. Soil Biol Biochem 48:60–68, doi:10.1016/j.soilbio.2012.01.014
  • HobbieEAvan DiepenLTLilleskovEAOuimetteAPFinziACHofmockelKS. 2014b. Fungal functioning in a pine forest: evidence from a 15N-labeled global change experiment. New Phytol 201:1431–1439, doi:10.1111/nph.12578
  • HobbieEAWeberNSTrappeJM. 2001. Ectomycorrhizal vs. saprotrophic status of fungi: the isotopic evidence. New Phytol 150:601–610, doi:10.1046/j.1469-8137.2001.00134.x
  • HobbieEAWeberNSTrappeJMvan KlinkenGJ. 2002. Using radiocarbon to determine the ectomycorrhizal status of fungi. New Phytol 156:129–136, doi:10.1046/j.1469-8137.2002.00496.x
  • HögbergP. 1997. 15N natural abundance of soil-plant systems. New Phytol 137:179–203.
  • HuaQBarbettiMRakowskiAZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 5, doi:10.2458/azu_js_rc.v55i2.16177
  • KanwalHPReddyMS. 2012. The effect of carbon and nitrogen sources on the formation of sclerotia in Morchella spp. Ann Microbiol 62:165–168, doi:10.1007/s13213-011-0241-6
  • KohnMJ. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc Natl Acad Sci 107:19691–19695, doi:10.1073/pnas.1004933107
  • KuoM. 2005. Morels. Ann Arbor: Univ. Michigan Press. 205 p.
  • KuoMDewsburyDRO’DonnellKCarterMCRehnerSAMooreJDMoncalvoJ-MCanfieldSAStephensonSLMethvenASVolkTJ. 2012. Taxonomic revision of true morels (Morchella) in Canada and the United States. Mycologia 104:1159–1177, doi:10.3852/11-375
  • LindahlBDIhrmarkKBobergJTrumboreSEHögbergPStenlidJFinlayRD. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620, doi:10.1111/j.1469-8137.2006.01936.x
  • MasaphySZabariL. 2013. Observations on post-fire black morel ascocarp development in an Israeli burnt forest site and their preferred micro-sites. Fungal Ecol 6:316–318, doi:10.1016/j.funeco.2013.02.005
  • MayorJRSchuurEAGHenkelTW. 2009. Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12:171–183, doi:10.1111/j.1461-0248.2008.01265.x
  • MotiejūnaitėJAdamonytėGIršėnaitėRJuzėnasSKasparavičiusJKutorgaEMarkovskajaS. 2014. Early fungal community succession following crown fire in Pinus mugo stands and surface fire in Pinus sylvestris stands. Eur J For Res 133:745–756, doi:10.1007/s10342-013-0738-6
  • O’DonnellKRooneyAPMillsGLKuoMWeberNSRehnerSA. 2011. Phylogeny and historical biogeography of true morels (Morchella) reveals an early Cretaceous origin and and high continental endemism and provincialism in the Holarctic. Fung Genet Biol 48: 252–265, doi:10.1016/j.fgb.2010.09.006
  • PilzDMcLainRAlexanderSVillarreal-RuizLBerchSWurtzTLParksCGMcFarlaneEBakerBMolinaRSmithJE. 2007. Ecology and management of morels harvested from the forests of western North America. USDA Forest Service, Pacific Northwest Research Station, Gen. Tech. Report PNW-GTR-710
  • RichardRSuaveMBellangerJMClowezPHansenKO’DonnellKUrbanACourtecuisseRMoreauPA. 2014. True morels (Morchella, Pezizales) of Europe and North America: evolutionary relationships inferred from multilocus data and a unified taxonomy. Mycologia 107:359–382, doi:10.3852/14-166
  • RobbinsWJHerveyA. 1959. Wood extract and growth of Morchella. Mycologia 51:356–363, doi:10.2307/3756055
  • StarkCBabikWDurkaW. 2009. Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol Res 113:952–959, doi:10.1016/jmycres.2009.05.002
  • TedersooLHansenKPerryBAKjøllerR. 2006. Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 581–596, doi:10.1111/j.1469-8137.2006.01678.x
  • VolkTJLeonardTJ. 1990. Cytology of the life cycle of Morchella. Mycol Res 94:399–406, doi:10.1016/S0953-7562(09)80365-1
  • VrålstadTHolst-JensenASchumacherT. 1998. The postfire discomycete Geopyxis carbonaria (Ascomycota) is a biotrophic root associate with Norway spruce (Picea abies) in nature. Mole Ecol 7:609–616, doi:10.1046/j.1365-294x.1998.00365.x
  • WarcupJ. 1990. Occurrence of ectomycorrhizal and saprophytic discomycetes after a wildfire in a eucalypt forest. Mycol Res 94:1065–1069, doi:10.1016/S0953-7562(09)81334-8
  • WilsonAWHobbieEAHibbettDS. 2007. The ectomycorrhizal status of Calostoma cinnabarinum determined using isotopic, molecular and morphological methods. Can J Bot 85:385–393, doi:10.1139/B07-026
  • WinderRSKeeferME. 2008. Ecology of the 2004 morel harvest in the Rocky Mountain Forest District of British Columbia. Botany 86:1152–1167, doi:10.1139/B08-045
  • WolfeBEKuoMPringleA. 2012. Amanita thiersii is a saprotrophic fungus expanding its range in the United States. Mycologia 104:22–33, doi:10.3852/11-056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.