863
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The Golgi apparatus: insights from filamentous fungi

Pages 603-622 | Received 05 Nov 2015, Accepted 01 Jan 2016, Published online: 20 Jan 2017

Literature cited

  • AbeliovichHGroteENovickPFerro-NovickS. 1998. Tlg2p, a yeast syntaxin homolog that resides on the Golgi and endocytic structures. J Biol Chem 273: 11719–11727, doi:10.1074/jbc.273.19.11719
  • AbenzaJFPantazopoulouARodriguezJMGalindoAPenalvaMA. 2009. Long-distance movement of Aspergillus nidulans early endosomes on microtubule tracks. Traffic 10:57–75, doi:10.1111/j.1600-0854.2008.00848.x
  • AkaoTYamaguchiMYaharaAYoshiuchiKFujitaHYamadaOAkitaOOhmachiTAsadaYYoshidaT. 2006. Cloning and expression of 1,2-alpha-mannosidase gene (fmanIB) from filamentous fungus Aspergillus oryzae: in vivo visualization of the FmanIBp-GFP fusion protein. Biosci, Biotechnol Biochem 70:471–479, doi:10.1271/bbb.70.471
  • AmessouMFradagradaAFalguieresTLordJMSmithDCRobertsLMLamazeCJohannesL. 2007. Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J Cell Sci 120:1457–1468, doi:10.1242/jcs.03436
  • ArcherDB. 2000. Filamentous fungi as microbial cell factories for food use. Curr Op Biotechnol 11:478–483, doi:10.1016/S0958-1669(00)00129-4
  • ArstHNJrHernandez-GonzalezMPenalvaMAPantazopoulouA. 2014. GBF/Gea mutant with a single substitution sustains fungal growth in the absence of BIG/Sec7. FEBS Lett 588:4799–4806, doi:10.1016/j.febslet.2014.11.014
  • BarrFA. 2013. Review series: Rab GTPases and membrane identity: causal or inconsequential? J Cell Biol 202: 191–199, doi:10.1242/jcs.02810
  • BehniaRBarrFAFlanaganJJBarloweCMunroS. 2007. The yeast ortholog of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. J Cell Biol 176:255–261, doi:10.1093/embo-reports/kve065
  • BeznoussenkoGVDolgikhVVSeliverstovaEVSemenovPBTokarevYSTruccoAMicaroniMDi GiandomenicoDAuingerPSenderskiyIVet al. 2007. Analogs of the Golgi complex in microsporidia: structure and avesicular mechanisms of function. J Cell Sci 120: 1288–1298, doi:10.1242/jcs.03402
  • BillenJMorganED. 1998. Pheromone communication in social insects: sources and secretions. In: Meervander, ed. Pheromone communication in social insects: ants, wasps, bees and termites . Boulder, Colorado: Westview Press. p 3–33.
  • BolteSCordelieresFP. 2006. A guided tour into subcellular colocalization analysis in light microscopy. J Microscopy 224:213–232, doi:10.1111/j.1365-2818.2006.01706.x
  • BonifacinoJSHierroA. 2011. Transport according to GARP: receiving retrograde cargo at the trans-Golgi network. Trends Cell Biol 21:159–167, doi:10.1016/j.tcb.2010.11.003
  • BourettTMJamesSWHowardRJ. 2007. The endomembrane system of the fungal cell. In: HowardRGowNR, eds. Biology of the fungal cell . Berlin: Springer. p 1–47.
  • BowmanBJDraskovicMFreitagMBowmanEJ. 2009. Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Euk Cell 8:1845–1855, doi:10.1128/EC.00174-09
  • BreakspearALangfordKJMomanyMAssinderSJ. 2007. CopA:GFP localizes to putative Golgi equivalents in Aspergillus nidulans. FEMS Microbiol Lett 277:90–97, doi:10.1111/j.1574-6968.2007.00945.x
  • BriganceWTBarloweCGrahamTR. 2000. Organization of the yeast golgi complex into at least four funtionally distinct compartments. Mol Biol Cell 11:171–182, doi:10.1091/mbc.11.1.171
  • BuhlerNHagiwaraDTakeshitaN. 2015. Functional analysis of sterol transporter orthologs in the filamentous fungus Aspergillus nidulans. Euk Cell 14:908–921, doi:10.1128/EC.00027-15
  • CaiYChinHFLazarovaDMenonSFuCCaiHSclafaniARodgersDWde la CruzEMFerro-NovickSet al. 2008. The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133:1202–1213, doi:10.1016/j.cell.2008.04.049
  • CasanovaJEHsuVWJacksonCLKahnRARoyCRStowJLWandinger-NessASztulE. 2013. Meeting report—Arf and Rab family G proteins. J Cell Sci 126: 5313–5316, doi:10.1242/jcs.143610
  • ChappellTGHajibagheriMAAyscoughKPierceMWarrenG. 1994. Localization of an alpha 1,2 galactosyltransferase activity to the Golgi apparatus of Schizosaccharomyces pombe. Mol Biol Cell 5:519–528, doi:10.1091/mbc.5.5.519
  • ColanziACordaD. 2007. Mitosis controls the Golgi and the Golgi controls mitosis. Curr Op Cell Biol 19:386–393, doi:10.1016/j.ceb.2007.06.002
  • ConesaAPuntPJvan LuijkNvan den HondelCA. 2001. The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171, doi:10.1006/fgbi.2001.1276
  • DaboussiLCostagutaGPayneGS. 2012. Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network. Nat Cell Biol 14:239–248, doi:10.1038/ncb2427
  • DayKJStaehelinLAGlickBS. 2013. A three-stage model of Golgi structure and function. Histochem Cell Biol 140:239–249, doi:10.1007/s00418-013-1128-3
  • de MatteisMALuiniA. 2008. Exiting the Golgi complex. Nat Rev Mol Cell Biol 9:273–284, doi:10.1038/nrm2378
  • de MatteisMAWilsonCD’AngeloG. 2013. Phosphatidylinositol-4-phosphate: the Golgi and beyond. BioEssays 35: 612–622, doi:10.1002/bies.201200180
  • de Saint-JeanMDelfosseVDouguetDChicanneGPayrastreBBourguetWAntonnyBDrinG. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biol 195: 965–978, doi:10.1126/science.1152066
  • de SouzaCPOsmaniAHHashmiSBOsmaniSA. 2004. Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 14:1973–1984, doi:10.1016/j.cub.2004.10.050
  • DeeJMMolliconeMLongcoreJERobersonRWBerbeeML. 2015. Cytology and molecular phylogenetics of Monoblepharidomycetes provide evidence for multiple independent origins of the hyphal habit in the Fungi. Mycologia 107:710–728, doi:10.3852/14-275
  • DengYGolinelli-CohenMPSmirnovaEJacksonCL. 2009. A COPI coat subunit interacts directly with an early-Golgi localized Arf exchange factor. EMBO Rep 10:58–64, doi:10.1038/embor.2008.221
  • DonaldsonJGJacksonCL. 2011. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Mol Cell Biol 12:362–375.
  • D’Souza-SchoreyCChavrierP. 2006. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358.
  • EganMJMcClintockMAReck-PetersonSL. 2012. Microtubule-based transport in filamentous fungi. Curr Op Microbiol 15:637–645, doi:10.1016/j.mib.2012.10.003
  • EmrSGlickBSLinstedtADLippincott-SchwartzJLuiniAMalhotraVMarshBJNakanoAPfefferSRRabouilleCet al. 2009. Journeys through the Golgi—taking stock in a new era. J Cell Biol 187:449–453, doi:10.1016/S0092-8674(00)81548-2
  • FarquharMG. 1985. Progress in unraveling pathways of Golgi traffic. Ann Rev Cell Biol 1:447–488, doi:10.1146/annurev.cb.01.110185.002311
  • GillinghamAKMunroS. 2007. The small G proteins of the Arf family and their regulators. Ann Rev Cell Develop Biol 23:579–611, doi:10.1146/annurev.cellbio.23.090506.123209
  • GirbardtM. 1969. Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67:413–441, doi:10.1007/BF01254905
  • GirodAStorrieBSimpsonJCJohannesLGoudBRobertsLMLordJMNilssonTPepperkokR. 1999. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1:423–430, doi:10.1038/15658
  • GlickBS. 1996. Cell biology: alternatives to baker’s yeast. Curr Biol 6:1570–1572, doi:10.1016/S0960-9822(02)70774-4
  • GlickBSLuiniA. 2011. Models for Golgi traffic: a critical assessment. Cold Spring Harbor Perspectives Biol 3: a005215.
  • GouldSJMcCollumDSpongAPHeymanJASubramaniS. 1992. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast 8:613–628, doi:10.1002/yea.320080805
  • GrahamTREmrSD. 1991. Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant. J Cell Biol 114:207–218, doi:10.1083/jcb.114.2.207
  • GremillionSKHarrisSDJackson-HayesLKaminskyjSGLopreteDMGauthierACMercerSRavitaAJHillTW. 2014. Mutations in proteins of the Conserved Oligomeric Golgi Complex affect polarity, cell wall structure and glycosylation in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 73:69–82, doi:10.1016/j.fgb.2014.10.005
  • GroveSNBrackerCE. 1970. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkorper. J Bacteriol 104:989–1009.
  • GuoYSirkisDWSchekmanR. 2014. Protein sorting at the trans-Golgi network. Ann Rev Cell Develop Biol 30:169–206, doi:10.1146/annurev-cellbio-100913-013012
  • HankinsHMBaldridgeRDXuPGrahamTR. 2015a. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16: 35–47, doi:10.1111/tra.12233
  • HankinsHMSereYYDiabNSMenonAKGrahamTR. 2015b. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Mol Biol Cell 26:4674–4685, doi:10.1091/mbc.E15-07-0487
  • HarrisSD. 2013. Golgi organization and the apical extension of fungal hyphae: an essential relationship. Mol Microbiol 89:212–215, doi:10.1111/mmi.12291
  • HarrisSDHofmannAFTedfordHWLeeMP. 1999. Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus Aspergillus nidulans. Genetics 151:1015–1025.
  • Hernandez-GonzalezMPenalvaMAPantazopoulouA. 2015. Conditional inactivation of Aspergillus nidulans sarA(SAR1) uncovers the morphogenetic potential of regulating endoplasmic reticulum (ER) exit. Mol Microbiol 95:491–508, doi:10.1111/mmi.12880
  • Herrero-GarciaEPerez-de-Nanclares-ArregiECorteseMSMarkina-InarrairaeguiAOiartzabal-AranoEEtxebesteOUgaldeUEspesoEA. 2015. Tip-to-nucleus migration dynamics of the asexual development regulator FlbB in vegetative cells. Molecular microbiology 98:607–624, doi:10.1111/mmi.13156
  • HoangHDMaruyamaJKitamotoK. 2015. Modulating endoplasmic reticulum-Golgi cargo receptors for improving secretion of carrier-fused heterologous proteins in the filamentous fungus Aspergillus oryzae. Applies and environmental microbiology 81:533–543, doi:10.1128/AEM.02133-14
  • HochHCHowardRJ. 1980. Ultrastructure of freeze-substituted hyphae of the basidiomyceteLaetisaria arvalis. Protoplasma 103:281–297, doi:10.1128/AEM.02133-14
  • HolthuisJCMenonAK. 2014. Lipid landscapes and pipelines in membrane homeostasis. Nature 510:48–57, doi:10.1038/nature13474
  • HowardRJ. 1981. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkorper, cytoskeleton and endomembranes after freeze substitution. J Cell Sci 48:89–103.
  • HubbardMAKaminskyjSG. 2008. Rapid tip-directed movement of Golgi equivalents in growing Aspergillus nidulans hyphae suggests a mechanism for delivery of growth-related materials. Microbiology 154:1544–1553, doi:10.1099/mic.0.2007/014811-0
  • JacksonCL. 2009. Mechanisms of transport through the Golgi complex. J Cell Sci 122:443–452, doi:10.1242/jcs.032581
  • Jackson-HayesLHillTWLopreteDMFayLMGordonBSNkashamaSAPatelRKSartainCV. 2008. Two GDP-mannose transporters contribute to hyphal form and cell wall integrity in Aspergillus nidulans. Microbiology 154:2037–2047, doi:10.1099/mic.0.2008/017483-0
  • Jackson-HayesLHillTWLopreteDMGordonBSGrooverCJJohnsonLRMartinSA. 2010. GDP-mannose transporter paralogues play distinct roles in polarized growth of Aspergillus nidulans. Mycologia 102:305–310, doi:10.3852/09-138
  • JeddGMulhollandJSegevN. 1997. Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 137:563–580, doi:10.1016/0955-0674(93)90130-I
  • JékelyG. 2008. Evolution of the Golgi complex. In: MironovAPavelkaM, eds. The Golgi apparatus . Vienna, Austria: Springer. p 675–691.
  • JinYSultanaAGandhiPFranklinEHamamotoSKhanARMunsonMSchekmanRWeismanLS. 2011. Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Develop Cell 21:1156–1170, doi:10.1016/j.devcel.2011.10.009
  • KajiwaraKIkedaAAguilera-RomeroACastillonGAKagiwadaSHanadaKRiezmanHMunizMFunatoK. 2014. Osh proteins regulate COPII-mediated vesicular transport of ceramide from the endoplasmic reticulum in budding yeast. J Cell Sci 127:376–387, doi:10.1242/jcs.132001
  • KaminskyjSGHamerJE. 1998. hyp loci control cell pattern formation in the vegetative mycelium of Aspergillus nidulans. Genetics 148:669–680.
  • KohliMGalatiVBoudierKRobersonRWPhilippsenP. 2008. Growth-speed-correlated localization of exocyst and polarisome components in growth zones of Ashbya gossypii hyphal tips. Journal of cell science 121:3878–3889, doi:10.1242/jcs.033852
  • KuratsuMTauraAShojiJYKikuchiSAriokaMKitamotoK. 2007. Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 44:1310–1323, doi:10.1016/j.fgb.2007.04.012
  • LeeITiwariNDunlopMHGrahamMLiuXRothmanJE. 2014. Membrane adhesion dictates Golgi stacking and cisternal morphology. Proc Natl Acad Sci USA 111:1849–1854, doi:10.1073/pnas.1323895111
  • LeeSCShawBD. 2008. Localization and function of ADP ribosylation factor A in Aspergillus nidulans. FEMS Microbiol Lett 283:216–222, doi:10.1111/j.1574-6968.2008.01174.x
  • LevineTPMunroS. 2001. Dual targeting of Osh1p, a yeast homolog of oxysterol-binding protein, to both the Golgi and the nucleus-vacuole junction. Mol Biol Cell 12:1633–1644, doi:10.1091/mbc.12.6.1633
  • LevineTPMunroS. 2002. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr Biol 12:695–704, doi:10.1016/S0960-9822(02)00779-0
  • LewisMJNicholsBJPrescianotto-BaschongCRiezmanHPelhamHR. 2000. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell 11:23–38, doi:10.1091/mbc.11.1.23
  • LiQLauAMorrisTJGuoLFordyceCBStanleyEF. 2004. A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization. J Neurosci 24: 4070–4081, doi:10.1523/JNEUROSCI.0346-04.2004
  • LipatovaZTokarevAAJinYMulhollandJWeismanLSSegevN. 2008. Direct interaction between a myosin V motor and the Rab GTPases Ypt31/32 is required for polarized secretion. Mol Biol Cell 19:4177–4187, doi:10.1091/mbc.E08-02-0220
  • Lippincott-SchwartzJYuanLTipperCAmherdtMOrciLKlausnerRD. 1991. Brefeldin A’s effects on endosomes, lysosomes and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67:601–616, doi:10.1016/0092-8674(91)90534-6
  • Lippincott-SchwartzJYuanLCBonifacinoJSKlausnerRD. 1989. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56:801–813, doi:10.1016/0092-8674(89)90685-5
  • LiuSStorrieB. 2012. Are Rab proteins the link between Golgi organization and membrane trafficking? Cell Mol Life Sci 69:4093–4106, doi:10.1007/s00018-012-1021-6
  • López-BergesMSPinarMAbenzaJFArstHNPeñalvaMA. 2016. The Aspergillus nidulans syntaxin PepAPep12 is regulated by two Sec1/Munc-18 proteins to mediate fusion events at early endosomes, late endosomes and vacuoles. Mol Microbiol 99:199–216.
  • LosevEReinkeCAJellenJStronginDEBevisBJGlickBS. 2006. Golgi maturation visualized in living yeast. Nature 441:1002–1006, doi:10.1038/nature04717
  • MaedaKAnandKChiapparinoAKumarAPolettoMKaksonenMGavinAC. 2013. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–261, doi:10.1038/nature12430
  • Markina-InarrairaeguiAPantazopoulouAEspesoEAPenalvaMA. 2013. The Aspergillus nidulans peripheral ER: disorganization by ER stress and persistence during mitosis. PloS one 8:e67154.
  • Matsuura-TokitaKTakeuchiMIchiharaAMikuriyaKNakanoA. 2006. Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010, doi:10.1371/journal.pone.0067154.s003
  • McDonoldCMFrommeJC. 2014. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-Golgi network. Develop Cell 30:759–767, doi:10.1016/j.devcel.2014.07.016
  • McLaughlinDJ. 1974. Ultrastructural localization of carbohydrate in the hymenium and subhymenium of Coprinus. Evidence for the function of the Golgi apparatus. Protoplasma 82:341–364, doi:10.1007/BF01275728
  • MeerRVPrestonC. 2008. Social insect pheromones. In: CapineraJ, ed. Encycl Entomol . The Netherlands: Springer. p 3440–3447.
  • MeyerVFiedlerMNitscheBKingR. 2015. The cell factory Aspergillus enters the big data era: opportunities and challenges for optimizing product formation. Advanc Biochem Engineer/Biotechnol 149:91–132.
  • MimsCWRichardsonEATimberlakeWE. 1988. Ultrastructural analysis of conidiophore development in the fungus Aspergillus nidulans using freeze-substitution. Protoplasma 144:132–141, doi:10.1007/10_2014_297
  • MironovAPavelkaM. 2008a. The Golgi apparatus as a crossroads in intracellular traffic. In: MironovAPavelkaM, eds. The Golgi apparatus . Vienna, Austria: Springer. p 16–39.
  • MironovA. 2008b. The Golgi apparatus—state of the art 110 years after Camillo Golgi’s discovery Vienna, Austria: Springer.
  • MironovAASesorovaIVBeznoussenkoGV. 2013. Golgi’s way: a long path toward the new paradigm of the intra-Golgi transport. Histochem Cell Biol 140: 383–393, doi:10.1007/s00418-013-1141-6
  • MomanyMRichardsonEAvan SickleCJeddG. 2002. Mapping Woronin body position in Aspergillus nidulans. Mycologia 94:260–266, doi:10.2307/3761802
  • Moser von FilseckJCopicADelfosseVVanniSJacksonCLBourguetWDrinG. 2015. Intracellular transport: phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349:432–436, doi:10.1126/science.aab1346
  • MouratouBBiouVJoubertACohenJShieldsDJGeldnerNJurgensGMelanconPCherfilsJ. 2005. The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf. BMC Genom 6:20.
  • MunroS. 2005. The Golgi apparatus: defining the identity of Golgi membranes. Curr Op Cell Biol 17:395–401, doi:10.1016/j.ceb.2005.06.013
  • MunroS. 2011a. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harbor Perspect Biol 3, 10.1101/cshperspect.a005256
  • MunroS. 2011b. What is the Golgi apparatus, and why are we asking? BMC Biol 9:63, doi:10.1186/1741-7007-9-63
  • NoirotCQuennedeyA. 1974. Fine structure of insect epidermal glands. Ann Rev Entomol 19:61–80, doi:10.1146/annurev.en.19.010174.000425
  • OrtizDMedkovaMWalch-SolimenaCNovickP. 2002. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles: evidence for a Rab cascade in yeast. J Cell Biol 157:1005–1015, doi:10.1007/s004380050944
  • PaczkowskiJERichardsonBCFrommeJC. 2015. Cargo adaptors: structures illuminate mechanisms regulating vesicle biogenesis. Trends Cell Biol 25:408–416, doi:10.1016/j.tcb.2015.02.005
  • PanatalaRHennrichHHolthuisJC. 2015. Inner workings and biological impact of phospholipid flippases. J Cell Sci 128:2021–2032, doi:10.1242/jcs.102715
  • PantazopoulouAPeñalvaMA. 2011. Characterization of Aspergillus nidulans RabC/Rab6. Traffic 12:386–406, doi:10.1111/j.1600-0854.2011.01164.x.
  • PantazopoulouADiallinasG. 2007. Fungal nucleobase transporters. FEMS Microbiol Rev 31:657–675, doi:10.1111/j.1600-0854.2011.01164.x
  • PantazopoulouAPenalvaMA. 2009. Organization and dynamics of the Aspergillus nidulans Golgi during apical extension and mitosis. Mol Biol Cell 20:4335–4347, doi:10.1091/mbc.E09-03-0254
  • PantazopoulouAPinarMXiangXPenalvaMA. 2014. Maturation of late-Golgi cisternae into RabE(RAB11) exocytic post-Golgi carriers visualized in vivo. Mol Biol Cell 25:2428–2443, doi:10.1091/mbc.E14-02-0710
  • PapanikouEGlickBS. 2014. Golgi compartmentation and identity. Curr Op Cell Biol 29:74–81.
  • PattersonGHHirschbergKPolishchukRSGerlichDPhairRDLippincott-SchwartzJ. 2008. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133:1055–1067, doi:10.1016/j.cell.2008.04.044
  • PenalvaMA. 2015. A lipid-managing program maintains a stout Spitzenkorper. Mol Microbiol 97:1–6, doi:10.1111/mmi.13044
  • PenalvaMAGalindoAAbenzaJFPinarMCalcagno-PizarelliAMArstHNPantazopoulouA. 2012. Searching for gold beyond mitosis: Mining intracellular membrane traffic in Aspergillus nidulans. Cell Log 2:2–14, doi:10.4161/cl.19304
  • PinarMArstHNJrPantazopoulouATaguaVGde Los RiosVRodriguez-SalarichsJDiazJFPenalvaMA. 2015. TRAPPII regulates exocytic Golgi exit by mediating nucleotide exchange on the Ypt31 ortholog RabERAB11. Proc Natl Acad Sci USA 112:4346–4351, doi:10.1073/pnas.1419168112
  • PinarMPantazopoulouAArstHNJrPenalvaMA. 2013. Acute inactivation of the Aspergillus nidulans Golgi membrane fusion machinery: correlation of apical extension arrest and tip swelling with cisternal disorganization. Mol Microbiol 89:228–248, doi:10.1111/mmi.12280
  • PolishchukRSMironovAA. 2004. Structural aspects of Golgi function. Cell Mol Life Sci 61:146–158, doi:10.1007/s00018-003-3353-8
  • PopoffVAdolfFBruggerBWielandF. 2011. COPI budding within the Golgi stack. Cold Spring Harbor Perspect Biol 3:a005231, doi:10.1101/cshperspect.a005231
  • Powers-FletcherMVFengXKrishnanKAskewDS. 2013. Deletion of the sec4 homolog srgA from Aspergillus fumigatus is associated with an impaired stress response, attenuated virulence and phenotypic heterogeneity. PloS one 8:e66741.
  • PreussDMulhollandJFranzusoffASegevNBotsteinD. 1992. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3:789–803, doi:10.1371/journal.pone.0066741.s002
  • PuntPJSeibothBWeeninkXOvan ZeijlCLendersMKonetschnyCRamAFMontijnRKubicekCPvan den HondelCA. 2001. Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homolog is not essential for growth. Mol Microbiol 41:513–525, doi:10.1046/j.1365-2958.2001.02541.x
  • RamirezIBLoweM. 2009. Golgins and GRASPs: holding the Golgi together. Seminars Cell Develop Biol 20:770–779, doi:10.1016/j.semcdb.2009.03.011
  • RiquelmeM. 2013. Tip growth in filamentous fungi: a road trip to the apex. Ann Rev Microbiol 67:587–609, doi:10.1146/annurev-micro-092412-155652
  • RobineauSChabreMAntonnyB. 2000. Binding site of brefeldin A at the interface between the small G protein ADP-ribosylation factor 1 (ARF1) and the nucleotide-exchange factor Sec7 domain. Proc Natl Acad Sci USA 97:9913–9918, doi:10.1073/pnas.170290597
  • RossaneseOWSoderholmJBevisBJSearsIBO’ConnorJWilliamsonEKGlickBS. 1999. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145:69–81, doi:10.1016/0378-1119(85)90120-9
  • RothmanJE. 1981. The Golgi apparatus: two organelles in tandem. Science 213:1212–1219, doi:10.1126/science.7268428
  • SacherMKimYGLavieAOhBHSegevN. 2008. The TRAPP complex: insights into its architecture and function. Traffic 9:2032–2042, doi:10.1111/j.1600-0854.2008.00833.x
  • Sanchez-LeonEBowmanBSeidelCFischerRNovickPRiquelmeM. 2015. The Rab GTPase YPT-1 associates with Golgi cisternae and Spitzenkorper microvesicles in Neurospora crassa. Mol Microbiol 95:472–490, doi:10.1111/mmi.12878
  • Santiago-TiradoFHLegesse-MillerASchottDBretscherA. 2011. PI4P and Rab inputs collaborate in myosin-V-dependent transport of secretory compartments in yeast. Develop Cell 20:47–59, doi:10.1016/j.devcel.2010.11.006
  • SatoKSatoMNakanoA. 1997. Rer1p as common machinery for the endoplasmic reticulum localization of membrane proteins. Proc Natl Acad Sci USA 94:9693–9698, doi:10.1073/pnas.94.18.9693
  • SchmitzHPPhilippsenP. 2011. Evolution of multinucleated Ashbya gossypii hyphae from a budding yeast-like ancestor. Fungal Biol 115:557–568, doi:10.1016/j.funbio.2011.02.015
  • SchneiderCARasbandWSEliceiriKW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9:671–675, doi:10.1038/nmeth.2089
  • SchultzhausZYanHShawBD. 2015. Aspergillus nidulans flippase DnfA is cargo of the endocytic collar and plays complementary roles in growth and phosphatidylserine asymmetry with another flippase, DnfB. Mol Microbiol 97:18–32, doi:10.1111/mmi.13019
  • SchusterMTreitschkeSKilaruSMolloyJHarmerNJSteinbergG. 2012. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31:214–227, doi:10.1038/emboj.2011.361
  • ShiXShaYKaminskyjS. 2004. Aspergillus nidulans hypA regulates morphogenesis through the secretion pathway. Fungal Genet Biol 41:75–88, doi:10.1016/j.fgb.2003.09.004
  • ShortBHaasABarrFA. 2005. Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim Biophys acta 1744:383–395, doi:10.1016/j.bbamcr.2005.02.001
  • SiniossoglouSPelhamHR. 2001. An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J 20: 5991–5998, doi:10.1093/emboj/20.21.5991
  • SmithRDWillettRKudlykTPokrovskayaIPatonAWPatonJCLupashinVV. 2009. The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 10:1502–1517, doi:10.1111/j.1600-0854.2009.00965.x
  • SonnichsenBde RenzisSNielsenERietdorfJZerialM. 2000. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5 and Rab11. J Cell Biol 149:901–914, doi:10.1083/jcb.140.5.1039
  • StorrieBMicaroniMMorganGPJonesNKamykowskiJAWilkinsNPanTHMarshBJ. 2012. Electron tomography reveals Rab6 is essential to the trafficking of trans-Golgi clathrin and COPI-coated vesicles and the maintenance of Golgi cisternal number. Traffic 13:727–744, doi:10.1111/j.1600-0854.2012.01343.x
  • SudaYKurokawaKHirataRNakanoA. 2013. Rab GAP cascade regulates dynamics of Ypt6 in the Golgi traffic. Proc Natl Acad Sc USA 110:18976–18981, doi:10.1073/pnas.1308627110
  • SudhofTC. 2013. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80: 675–690, doi:10.1016/j.neuron.2013.10.022
  • Taheri-TaleshNHorioTAraujo-BazanLDouXEspesoEAPenalvaMAOsmaniSAOakleyBR. 2008. The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449, doi:10.1091/mbc.E07-05-0464
  • Taheri-TaleshNXiongYOakleyBR. 2012. The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulans. PloS one 7:e31218.
  • TakeshitaNManckRGrunNde VegaSHFischerR. 2014. Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Op Microbiol 20:34–41, doi:10.1371/journal.pone.0031218.s012
  • Valdez-TaubasJPelhamHR. 2003. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr Biol 13:1636–1640, doi:10.1016/j.cub.2003.09.001
  • VeenendaalTJarvelaTGrieveAGvan EsJHLinstedtADRabouilleC. 2014. GRASP65 controls the cis Golgi integrity in vivo. Biol Open 3:431–443, doi:10.1242/bio.20147757
  • WangYSeemannJPypaertMShorterJWarrenG. 2003. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J 22:3279–3290, doi:10.1093/emboj/cdg317
  • WassmerTAttarNHarterinkMvan WeeringJRTraerCJOakleyJGoudBStephensDJVerkadePKorswagenHCet al. 2009. The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network. Develop Cell 17:110–122, doi:10.1016/j.devcel.2009.04.016
  • Wedlich-SoldnerRSchulzIStraubeASteinbergG. 2002. Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol Biol Cell 13:965–977, doi:10.1091/mbc.01-10-0475
  • WeiJHSeemannJ. 2010. Unraveling the Golgi ribbon. Traffic 11:1391–1400, doi:10.1111/j.1600-0854.2010.01114.x
  • WhyteJRMunroS. 2001. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Develop Cell 1:527–537, doi:10.1016/S1534-5807(01)00063-6
  • WongMMunroS. 2014. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346:1256898, doi:10.1126/science.1256898
  • WoodingSPelhamHR. 1998. The dynamics of golgi protein traffic visualized in living yeast cells. Mol Biol Cell 9:2667–2680, doi:10.1091/mbc.9.9.2667
  • WrightJKahnRASztulE. 2014. Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation. Cell Mol Life Sci 71:3419–3438, doi:10.1007/s00018-014-1602-7
  • YangYEl-GaninyAMBrayGESandersDAKaminskyjSG. 2008. Aspergillus nidulans hypB encodes a Sec7-domain protein important for hyphal morphogenesis. Fungal Genet Biol 45:749–759, doi:10.1016/j.fgb.2007.11.005
  • ZhangJTanKWuXChenGSunJReck-PetersonSLHammerJA3rdXiangX. 2011. Aspergillus myosin-V supports polarized growth in the absence of microtubule-based transport. PloS one 6:e28575.
  • ZhouWChangJWangXSavelieffMGZhaoYKeSYeB. 2014. GM130 is required for compartmental organization of dendritic golgi outposts. Curr Biol 24:1227–1233, doi:10.1371/journal.pone.0028575.s001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.