554
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Carbon utilization profile of the filamentous fungal species Fusarium fujikuroi, Penicillium decumbens, and Sarocladium strictum isolated from marine coastal environments

&
Pages 1069-1081 | Received 23 Nov 2015, Accepted 03 Jun 2016, Published online: 30 Jan 2017

Literature cited

  • Ahumada R.2002. Marine Concepcion Bay—a tectonic embayment—on the southeastern Pacific coastline: a case study. In: Castilla JCLazier JL eds. The oceanography and ecology of the nearshore and bays in Chile. Santiago, Chile: Catholic Univ. Chile. p 67–93.
  • Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar Sci 3:401–425 doi:10.1146/annurev-marine-120709-142731
  • Arnosti CRepeta DJBlough NV.1994. Rapid bacterial degradation of polysaccharides in anoxic marine systems. Geochim Cosmochim Acta 58:2639–2652 doi:10.1016/0016-7037(94)90134-1
  • Arnosti CSteen AD.2013. Patterns of extracellular enzyme activities and microbial metabolism in an Arctic fjord of Svalbard and in the northern Gulf of Mexico: contrasts in carbon processing by pelagic microbial communities. Front Microbiol 4:318 doi:10.3389/fmicb.2013.00318
  • Azam F.1998. Microbial control of oceanic carbon flux: the plot thickens. Science 280:694–696 doi:10.1126/science.280.5364.694
  • Azam F. Fenchel TField JGGray JSMeyer-Reil LAThingstad F.1983. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263, http://www.int-res.com/articles/meps/10/m010p257.pdf
  • Bailey CArst HN.1975. Carbon catabolite repression in Aspergillus nidulans. Eur J Biochem 51:573–577 doi:10.1111/j.1432-1033.1975.tb03958.x/pdf
  • Baldrian PValášková V.2008. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521 doi:10.1111/j.1574-6976.2008.00106.x
  • Bechem EET.2012. Utilization of organic and inorganic nitrogen sources by Scleroderma sinnamariense mont. isolated from Gnetum africanum welw. Afr J Biotechnol 11:9205–9213, http://ajol.info/index.php/ijbcs
  • Benner R.2002. Chemical composition and reactivity. In: Hansell DACarlson CA eds. Biogeochemistry of marine dissolved organic matter. Amsterdam: Academic Press. p 59–85.
  • Biddanda BA.1986. Structure and function of marine microbial aggregates. Oceanol Acta 9:209–211, http://archimer.ifremer.fr/doc/00111/22271/19946.pdf
  • Bochner BR.2009. Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33:191–205 doi:10.1111/j.1574-6976.2008.00149.x PMCID: PMC2704929
  • Breitbart M.2012. Marine viruses: truth or dare. Ann Rev Mar Sci 4:425–448 doi:10.1146/annurev-marine-120709-142805
  • Brown MRJeffrey SW.1992. Biochemical composition of microalgae from the classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J Exp Mar Biol Ecol 161:91–113 doi:10.1016/0022-0981(92)90192-D
  • Brown MRJeffrey SW. Volkman JKDunstan GA.1997. Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331 doi:10.1016/S0044-8486(96)01501-3
  • Cantino EC.1949. The physiology of the aquatic Phycomycete, Blastocladia pringsheimii, with emphasis on its nutrition and metabolism. Bot Soc Am 36:95–112, http://www.jstor.org/stable/2438127
  • Capone DGHutchins DA.2013. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat Geosci 6:711–717 doi:10.1038/ngeo1916
  • Cowie GLHedges L.1992. Sources and reactivities of amino acids in a coastal marine environment. Limnol Oceanogr 37:703–724, http://aslo.org/lo/toc/vol_37/issue_4/0703.pdf
  • Cubero BGómez DScazzocchio C.2000. Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J Bacteriol 182:233–235 doi:10.1128/JB.182.1.233-235.2000
  • Cuevas LADaneri GJacob BMontero P.2004. Microbial abundance and activity in the seasonal upwelling area off Concepción (w36_S), central Chile: a comparison of upwelling and non-upwelling conditions. Deep Sea Res Pt II 51:2427–2440 doi:10.1016/j.dsr2.2004.07.026
  • Cury PRoy C.1989. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can J Fish Aquat Sci 46:670–680 doi:10.1139/f89-086
  • Daneri GDellarossa VQuiñones RJacob BMontero PUlloa O.2000. Primary production and community respiration in the Humboldt Current System off Chile and associated oceanic areas. Mar Ecol Prog Ser 197:41–49 doi:10.3354/meps197041
  • De Long EF.1992. Archaea in coastal marine environments. PNAS USA 89:5685–5689, http://www.ncbi.nlm.nih.gov/pubmed/1608980
  • Dewitte BVazquez-Cuervo JGoubanova KIllig STakahashi KCambon GPurca SCorrea DGutierrez DSiffedine AOrtlieb L.2012. Change in El Niño flavours over 1958–2008: implications for the long-term trend of the upwelling off Peru. Deep Sea Res Pt II 77–80:143–156 doi:10.1016/j.dsr2.2012.04.011
  • Doney SCRuckelshaus MDuffy JEBarry JPChan FEnglish CAGalindo HMGrebmeier JMHollowed ABKnowlton NPolovina JRabalais NNSydeman WJTalley LD.2012. Climate change impacts on marine ecosystems. Ann Rev Mar Sci 4:11–37 doi:10.1146/annurev-marine-041911-111611
  • Druzhinina ISKopchinskiy AGKubicek CP.2006. The first one hundred of Trichoderma species is characterised by molecular data. Mycoscience 47:55–64 doi:10.1007/s10267-006-0279-7
  • El-Gogary SLeite ACrivellaro OEveleigh DEEl-Dorry H.1989. Mechanism by which cellulose triggers cellobiohydrolase I gene expression in Trichoderma reesei. PNAS USA 86:6138–6141 PMC297791
  • Falvey MGarreaud R.2009. Regional cooling in a warming world: recent temperature trends in the SE Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102 doi:10.1029/2008JD010519
  • Feely RASabine CLHernandez-Ayon JMIanson DHales B.2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492 doi:10.1126/science.1155676
  • Fuentes MEGutiérrez MHQuiñones RAPantoja S.2015. Effects of temperature and glucose concentration on the growth and respiration of fungal species isolated from a highly productive coastal upwelling ecosystem. Fungal Ecol 13:135–149 doi:10.1016/j.funeco.2014.09.006
  • Fuhrman JA.1999. Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548 doi:10.1038/21119
  • Fuhrman JAFerguson RL.1986. Nanomolar concentrations and rapid turnover of dissolved free amino acids in seawater: agreement between chemical and microbiological measurements. MECO 33:237–242, http://www.int-res.com/articles/meps/33/m033p237.pdf
  • Gadanho MLibkind DSampaio JP.2006. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol 52:552–563 doi:10.1007/s00248-006-9027-y
  • Gadd GM.2006. Fungi in biochemical cycles. Oxford: Cambridge Univ. Press. 529 p.
  • Gan JAllen J.2002. A modeling study of shelf circulation off northern California in the region of the Coastal Ocean Dynamics Experiment. Simulations and comparisons with observations. J Geophys Res 107:3184–3204 doi:10.1029/2001JC001190
  • Gao ZJohnson ZIWang G.2010. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120 doi:10.1038/ismej.2009.87
  • García-Reyes MSydeman WJSchoeman DSRykaczewski RRBlack BASmit AJBograd SJ.2015. Under pressure: climate change, upwelling, and eastern boundary upwelling ecosystems. Front Mar Sci 2:109 doi:10.3389/fmars.2015.00109
  • Gong CSLadisch MRTsao GT.1979. Biosynthesis, purification, and mode of action of cellulases of Trichoderma reesei. Adv Chem Ser 181:261–288 doi:10.1021/ba-1979-0181.ch013
  • González RGavrias VGomez DScazzocchio CCubero B.1997. The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element, ADA. EMBO J 16:2937–2944 doi:10.1093/emboj/16.10.2937
  • Grantham BAChan FNielsen KJFox DSBarth JAHuyer ALubchenco JMenge BA.2004. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429:749–754 doi:10.1038/nature02605
  • Gruber N.2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Phil Trans R Soc A 369:1980–1996 doi:10.1098/rsta.2011.0003
  • Gueuen CGuo LWang DTanaka NHung CC.2006. Chemical characteristics and origin of dissolved organic matter in the Yukon River. Biochemistry 77:139–155 doi:10.1007/s10533-005-0806-1
  • Gutiérrez DBouloubassi ISifeddine APurca1 SGoubanova KGraco MField DMéjanelle LVelazco FLorre ASalvatteci RQuispe DVargas GDewitte BOrtlieb L.2011a. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys Res Lett 38:L07603 doi:10.1029/2010GL046324
  • Gutiérrez MPantoja SQuiñones RAGonzález R.2010. First record of filamentous fungi in the coastal upwelling ecosystem off central Chile. Gayana 74:66–73 doi:10.4067/S0717-65382010000100010
  • Gutiérrez MPantoja STejos EQuiñones RA.2011. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219 doi:10.1007/s00227-010-1552-z
  • Hamukuaya HO’Toole MJWoodhead PMJ.1998. Observations of severe hypoxia and offshore displacement of Cape hake over the Namibian shelf in 1994. S Afr J Mar Sci 19:57–59 doi:10.2989/025776198784126809
  • Hassler CSSchoemann VNichols CMButler ECVBoyd PM.2011. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. PNAS USA 108:1076–1081 doi:10.1073/pnas.1010963108
  • Hellebust JA.1974. Extracellular products. In: Stewart WDPed. Algal physiology and biochemistry. Berkeley, California: Univ. California Press. p 838–863.
  • Herndl GJWeinbauer MG.2003. Marine microbial food web structure and function. In: Wefer GLamy FMantoura F eds. Marine science frontiers for Europe. Berlin: Springer-Verlag. p 265–277.
  • Hobbie EA.2005. Using isotopic tracers to follow carbon and nitrogen cycling of fungi. In: Dighton JOudemans PWhite J eds. The fungal community: its organization and role in the ecosystem. New York: Marcel Dekker. p 361–381 doi:10.1201/9781420027891.ch18
  • Hofmann GESmith JEJohnson KSSend ULevin LAMicheli FPaytan APrice NNPeterson BTakeshita YMatson PGCrook EDKroeker KJGambi MCRivest EBFrieder CAYu PCMartz TR.2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6:e28983 doi:10.1371/journal.pone.0028983
  • Holmes RWAnderson GC.1963. Size fractionation of 14 C labeled natural phytoplankton communities. In: Oppenheimer CHThomas CC eds. Symposium on marine microbiology. Springfield, Illinois. p 241–250.
  • Hoppe HGKim SJGocke K.1988. Microbial decomposition in aquatic environments: combined process of extracellular enzyme activity and substrate uptake. Appl Environ Microbiol 54:784–790, http://aem.asm.org/content/54/3/784.abstract
  • Hung CCGuo LSantschi PHAlvarado-Quiroz NHaye JM.2003. Distributions of carbohydrate species in the Gulf of Mexico. Mar Chem 81:119–135 doi:10.1016/S0304-4203(03)00012-4
  • Iriarte JLVargas CATapia FJBermudez RUrrutia RE.2012. Primary production and plankton carbon biomass in a river-influenced upwelling area off Concepcion, Chile. Prog Oceanogr 92–95:97–109 doi:10.1111/pre.12050
  • Ittekkot VBrockmann UMichaelis WDegens ET.1981. Dissolved free and combined carbohydrates during a phytoplankton bloom in the northern North Sea. MEPS 4:299–305, http://www.int-res.com/articles/meps/4/m004p299.pdf
  • Jannasch HW.1967. Growth of marine bacteria at limiting concentration of organic carbon in seawater. Limnol Oceanogr 12:264–271, http://www.avto.aslo.info/lo/toc/vol_12/issue_2/0264.pdf
  • Jebaraj CSRaghukumar C.2010. Nitrate reduction by fungi in marine oxygen-depleted laboratory microcosms. Bot Mar 53:469–474 doi:10.1515/bot.2010.046
  • Johnson TWSparrow FK Jr. 1961. Fungi in oceans and estuaries. New York: Hafner. 668 p.
  • Joint IDoney SCKarl DM.2011. Will ocean acidification affect marine microbes? ISME J 5:1–7 doi:10.1038/ismej.2010.79
  • Kavanagh K.2011. Fungi: biology and applications. 2nd ed. Oxford: Wiley. 384 p.
  • Kjøller AHStruwe S.2002. Fungal communities, succession, enzymes, and decomposition. Enzymes in the environment: activity, ecology, and applications. New York: Marcel Dekker. p 267–284.
  • Knowles JLehtovaara PPenttila MTeeri THarkki ASalovuori I.1987. The cellulase genes of Trichoderma. Antonie van Leeuwenhoek J Microbiol 53:335–341 doi:10.1007/BF00400557
  • Kohlmeyer J.1960. Wood-inhabiting marine fungi from the Pacific Northwest and California. Nova Hedwigia 2:293–343.
  • Kubicek CPBissett JDruzhinina IKullnig-Gradinger CSzakacs G.2003. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–319, http://www.ncbi.nlm.nih.gov/pubmed/12684020
  • Lee CWakeham SGArnosti C.2004. Particulate organic matter in the sea: the composition conundrum. Ambio 33:565–575, http://www.jstor.org/stable/4315547
  • Léniz BVargas CAAhumada R.2012. Characterization and comparison of microphytoplankton biomass in the lower reaches of the Biobío River and the adjacent coastal area off Central Chile during autumn-winter conditions. LAJAR 40:847–857 doi:10.3856/vol40-issue4-fulltext-3+
  • Levipan HAAlarcón WOSaldías GS.2012. Fingerprinting analysis of the prokaryote community along a marine-freshwater transect in central-southern Chile. Ann Microbiol 62:1121–1140 doi:10.1007/s13213-011-0353-z
  • Liebezeit GBôlter MBrown FDawson R.1980. Dissolved free amino acids and carbohydrates at pycnocline boundaries in the Sargasso Sea and related microbial activity. Oceanol Acta 3:357–362, http://archimer.ifremer.fr/doc/00122/23277/21106.pdf
  • Lindahl BDde Boer WFinlay RD.2010. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J 4:872–881 doi:10.1038/ismej.2010.19
  • Liu JWWeinbauer MGMaier CDai MGattuso JP.2010. Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat Microb Ecol 61:291–305 doi:10.3354/ame01446
  • Lloyd KGSchreiber LPetersen DGKjeldsen KULever MASteen ADStepanauskas RRichter MKleindienst SLenk SSchramm AJørgensen BB.2013. Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–218 doi:10.1038/nature12033
  • López-Archilla AIGonzález AETerrón MCAmils R.2004. Ecological study of the fungal populations of the acidic Tinto River in southwestern Spain. Can J Microbiol 50:923–934 doi:10.1139/w04-089
  • Mandels MReese ET.1960. Induction of cellulase in fungi by cellobiose. J Bacteriol 79:816–826, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC278786/
  • Mchunu NPPermaul KAlam MSingh S.2013. Carbon utilization profile of a thermophilic fungus, Thermomyces lanuginosus using phenotypic microarray. Adv Biosci Biotech 4:24–32 doi:10.4236/abb.2013.49A004
  • Meyers SPReynolds ES.1960. Occurrence of lignicolous fungi in Northern Atlantic and Pacific marine localities. Can J Bot 38:217–226 doi:10.1139/b60-019
  • Mohammad SHJahim JMNopiah ZMurad AMABakar FDAIllias R.2012. Preliminary study on diverse carbon utilization by transformant Aspergillus niger. IJASEIT 2:11–15, http://insightsociety.org/ojaseit/index.php/ijaseit/article/view/204/209
  • Moller EFThor PNielsen TG.2003. Production of DOC by Calanus finmarchicus, C. glacialis and C. hyperboreus through sloppy feeding and leakage from fecal pellets. Mar Ecol Prog Ser 262:185–191, http://www.int-res.com/articles/meps2003/262/m262p185.pdf
  • Montero PDaneri GAntonio Cuevas LGonzález HEJacob BLizárraga LMenschel E.2007. Productivity cycles in the coastal upwelling area off Concepción: the importance of diatoms and bacterioplankton in the organic carbon flux. Prog Oceanogr 75:518–530 doi:10.1016/j.pocean.2007.08.013
  • Muñiz SLacarta JPata MPJiménez JJNavarro E.2014. Analysis of the diversity of substrate utilization of soil bacteria exposed to Cd and earthworm activity using generalised additive models. PLoS One 9:e85057 doi:10.1371/journal.pone.0085057
  • Nagata TKirchman DL.1991. Release of dissolved free and combined amino acids by bacterivorous marine flagellates. Limnol Oceanogr 36:433–443 doi:10.4319/lo.1991.36.3.0433
  • Nagata TMeon BKirchman DL.2003. Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr 48:745–754, http://www.aslo.org/lo/toc/vol_48/issue_2/0745.pdf
  • Orij RBrul SSmits GJ.2011. Intracellular pH is a tightly controlled signal in yeast. Biochim Biophys Acta 1810:933–944 doi:10.1016/j.bbagen.2011.03.011
  • Panagiotopoulos CSempere R.2005. Analytical methods for the determination of sugars in marine samples: a historical perspective and future directions. Limnol Oceanog 3:419–454 doi:10.4319/lom.2005.3.419
  • Pantoja SGutiérrez MHAmpuero PTejos E.2011. Degradation capability of the coastal environment adjacent to the Itata River in central Chile (36.5°S). Biogeosciences 8:2063–2074 doi:10.5194/bg-8-2063-2011
  • Pierce RWTurner JT.1992. Ecology of planktonic ciliates in marine food webs. Rev Aquat Sci 6:139–181.
  • Pomeroy LR.1974. The ocean’s food web, a changing paradigm. Bioscience 24:499–504 doi:10.2307/1296885
  • Poretsky RSSun SMou XMoran MA.2010. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol 12:616–627 doi:10.1111/j.1462-2920.2009.02102.x
  • Pronk JTSteensmays HYVan Dijken JP.1996. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633, http://www.ncbi.nlm.nih.gov/pubmed/9123965
  • Quiñones RAGutiérrez MHDaneri GGutierrez DGonzález HEChavez F.2010. The Humboldt current system. In: Liu KKAtkinson LQuinones RTalaue-McManus L, eds. Carbon and nutrient fluxes in continental margins. Berlin: Springer. p 44–64.
  • Raghukumar C.2006. Algal-fungal interactions in the marine ecosystem: symbiosis to parasitism. In: Tewari A. Recent advances on applied aspects of Indian marine algae with reference to global scenario. Vol. 1. p 366–385, http://drs.nio.org/drs/handle/2264/819
  • Raghukumar S.2004. The role of fungi in marine detrital processes. In: Ramaiah Ned. Marine microbiology: facets and opportunities. Goa, India: National Institute of Oceanography. p 91–101, http://drs.nio.org/drs/handle/2264/75
  • Rodrigues FLudovico PLeão C.2006. Sugar metabolism in yeasts: an overview of aerobic and anaerobic glucose catabolism. In: Péter GRosa C eds. Biodiversity and ecophysiology of yeasts: the yeast handbook. Berlin: Springer. p 101–121.
  • Sakugawa HHanda N.1985. Chemical studies on dissolved carbohydrates in the water samples collected from the North Pacific and Bering Sea. Oceanol Acta 8:185–196, http://archimer.ifremer.fr/doc/00112/22305/19979.pdf
  • Salamanca MAPantoja S.2009. Caracterización química de la zona marina adyacente a la desembocadura del río Itata. In: Parra OCastilla JCRomero HQuiñones RACamaño A eds. La cuenca hidrográfica del Río Itata: aportes científicos para su gestión sustentable. Concepción, Chile: Univ. Concepción. p 177–191.
  • Seidl VDruzhinina ISKubicek CP.2006. A screening system for carbon sources enhancing b-N-acetylglucosaminidase formation in Hypocrea atroviridis (Trichoderma atroviride). Microbiology 152:2003–2012 doi:10.1099/mic.0.28897-0
  • Sharp JH.1977. Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol Oceanogr 22:381–399 doi:10.4319/lo.1977.22.3.0381
  • Singh MP.2009. Application of Biolog FF Microplate for substrate utilization and metabolite profiling of closely related fungi. J Microbiol Methods 77:102–108 doi:10.1016/j.mimet.2009.01.014
  • Steele CW.1967. Fungus populations in marine waters and coastal sands of the Hawaiian, Line, and Phoenix Islands. Pac Sci 21:317–331, http://hdl.handle.net/10125/7406
  • Sternberg DMandels GR.1979. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J Bacteriol 139:761–769, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC218020/
  • Suttle CA.2007. Marine Viruses- Major players in the global ecosystem. Nat Rev Immunol 5:801–812 doi:10.1038/nrmicro1750
  • Tam LDerry AMKevan PGTrevors JT.2001. Functional diversity and community structure of microorganisms in rhizosphere and non-rhizosphere Canadian arctic soils. Biodivers Conserv 10:1933–1947, http://link.springer.com/article/10.1023%2FA%3A1013143503902
  • Tanzer MArst HNSkalchunes ARCoffin MDarveaux BAHeiniger RWShuster JR.2003. Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3:160–170. doi:10.1007/s10142-003-0089-3
  • Tosiah S.2013. Carbon utilization pattern of Exserohilum monoceras isolates from Malaysian rice fields. J Trop Agr Food Sci 41:109–118, http://rac1.mardi.gov.my/jtafs/41-1/Carbon%20utilization.pdf
  • Troncoso VADaneri GCuevas LAJacob BMontero P.2003. Bacterial carbon flow in the Humboldt Current System off Chile. Mar Ecol Prog Ser 250:1–12, http://www.int-res.com/articles/meps2003/250/m250p001.pdf
  • Vega Thurber RWillner-Hall DRodriguez-Mueller BDesnues CEdwards RAAngly FDinsdale EKelly LRohwer F.2009. Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163 doi:10.1111/j.1462-2920.2009.01935.x
  • Volkman JKBrown MRDunstan GAJeffrey SW.1993. The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78 doi:10.1111/j.1529-8817.1993.tb00281.x
  • Wang GJohnson Z.2009. Impact of parasitic fungi on the diversity and functional ecology of marine phytoplankton. In: Kersey TMunger S eds. Marine phytoplankton. Hauppauge, New York: Nova Science Publishers. p 211–228.
  • Wang GWang XLiu XLi Q.2012. Diversity and biogeochemical function of planktonic fungi in the ocean. In: Raghukumar Ced. Biology of marine fungi. Berlin: Springer. p 71–88.
  • Wang XSingh PGao ZZhang XJohnson ZIWang G.2014. Distribution and diversity of planktonic fungi in the West Pacific warm pool. PLoS One 9:e101523 doi:10.1371/journal.pone.0101523
  • Weiss MSAbele UWeckesser JWelte WSchiltz ESchulz GE.1991. Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630, http://www.ncbi.nlm.nih.gov/pubmed/1721242
  • Yáñez EBarbieri MASilva CNieto KEspíndola F.2001. Climate variability and pelagic fisheries in northern Chile. Prog Oceanogr 49:581–596 doi:10.1016/S0079-6611(01)00042-8
  • Yang GPCheng QLi XXCao XY.2010. Study on the sorption behaviors of Tween-80 on marine sediments. Chemosphere 79:1019–1025 doi:10.1016/j.chemosphere.2010.03.063
  • Yeh SWKug KSDewitte BKwon MHKirtman BPJin FF.2009. El Niño in a changing climate. Nature 461:511–514 doi:10.1038/nature08316
  • Zak JCWillig MRMoorhead DLWildmand HG.1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26:1101–1108 doi:10.1016/0038-0717(94)90131-7
  • Zheng YYu XZeng JChen S.2012. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5:50 doi:10.1186/1754-6834-5-50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.