1,457
Views
302
CrossRef citations to date
0
Altmetric
Review

Photobiology of microalgae mass cultures: understanding the tools for the next green revolution

Pages 143-162 | Published online: 09 Apr 2014

Bibliography

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotech.19(3),235–240 (2008).
  • Schenk PM, Thomas-Hall SR, Stephens E et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res.1(1),20–43 (2008).
  • Rodolfi L, Chini Zittelli G, Bassi N et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng.102(1),100–112 (2009).
  • Wagener K. Mass cultures of marine algae for energy farming in coastal deserts. Int. J. Biometeor.27(3),227–233 (1983).
  • Balloni W, Florenzano G, Materassi R, Tredici MR, Soeder CJ, Wagener K. Mass culture of algae for energy farming in coastal deserts. In: Energy from Biomass. Strub A, Chartier P, Schleser G (Eds). Applied Science Publishers, London, UK, 291–295 (1983).
  • Tredici MR. Mass production of microalgae: photobioreactors. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Richmond A (Ed.). Blackwell Science Ltd, Oxford, UK, 178–214 (2004).
  • Hall DO, Rao KK (Eds). Photosynthesis (6th Edition). Cambridge University Press, Cambridge, UK, 214 (1999).
  • Hill R, Bendall F. Function of two cytochrome components in chloroplasts: a working hypothesis. Nature186(4719),136–137 (1960).
  • Barber J, Archer MD. Photosynthesis and photoconversion. In: Molecular to Global Photosynthesis. Archer MD and Barber J (Eds). Imperial College Press, London, UK, 1–41 (2004).
  • Masojídek J, Koblížek M, Torzillo G. Photosynthesis in Microalgae. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Richmond A (Ed.). Blackwell Science Ltd, Oxford, UK, 20–39 (2004).
  • Goldman JC. Outdoor algal mass cultures – II. Photosynthetic yield limitations. Water Res.13,119–160 (1979).
  • Kirk JTO (Ed.). Light and Photosynthesis in Aquatic Ecosystems (2nd Edition). Cambridge University Press, Cambridge, UK, 509 (1994).
  • Vonshak A, Torzillo G. Environmental Stress Physiology. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Richmond A (Ed.). Blackwell Science Ltd, Oxford, UK, 57–82 (2004).
  • Zhu XG, Long SP, Ort DR. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?. Curr. Opin. Biotech.19(2),153–159 (2008).
  • Raven JA. Limits to growth. In: Micro-algal Biotechnology. Borowitzka MA, Borowitzka LJ (Eds). Cambridge University Press, Cambridge, UK, 331–356 (1988).
  • Govindjee. On the requirement of minimum number of four versus eight quanta of light for the evolution on one molecule of oxygen in photosynthesis: a historical note. Photosynth. Res.59(2–3),249–254 (1999).
  • Warburg O, Krippahl G, Lehnan A. Chlorophyll catalysis and Einstein’s law of photochemical equivalence in photosynthesis. Am. J. Bot.56(9),961–971 (1969).
  • Pirt SJ. Extension of the limits of photosynthesis by novel solar reactors. Rivista di Biologia74,27–47 (1981).
  • Pirt SJ, Lee Y-K, Richmond A, Pirt Watts M. The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J. Chem. Technol. Biot.30(1),25–34 (1980).
  • Greenbaum E, Lee JW, Tevault CV, Blankinship SL, Mets LJ. CO2 fixation and photoevolution of H2 and O2 in a mutant of Chlamydomonas lacking photosystem I. Nature376(6539),438–441 (1995).
  • Greenbaum E, Lee JW, Tevault CV, Blankinship SL, Mets LJ. Correction: CO2 fixation and photoevolution of H2 and O2 in a mutant of Chlamydomonas lacking photoystem I. Nature388(6644),808 (1997).
  • Edwards GE, Walker DA. Photosynthetic carbon assimilation. In: Molecular to Global Photosynthesis. Archer MD, Barber J (Eds). Imperial College Press, London, UK, 189–220 (2004).
  • Tredici MR, Chini Zittelli G. Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol. Bioeng.57(2),187–197 (1998).
  • Greenbaum E. Energetic efficiency of hydrogen photoevolution by algal water splitting. Biophys. J.54(2),365–368 (1988).
  • Zijffers J-WF, Schippers KJ, Ke Zheng, Janssen M, Tramper J, Wijffels RH. Photosynthetic yield of green microalgae in panel photobioreactors. Mar. Biotechnol. (In press).
  • Richmond A. Biological principles of mass cultivation. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Richmond A (Ed.). Blackwell Science Ltd, Oxford, UK, 125–177 (2004).
  • Vonshak A, Guy R. Photoadaptation, photoinhibition and productivity in the blue-green alga Spirulina platensis grown outdoors. Plant Cell Environ.15(5),613–616 (1992).
  • Havelková-Doušová H, Prášil O, Behrenfeld MJ. Photoacclimation of Dunaliella tertiolecta (Chlorophyceae) under fluctuating light. Photosynthetica42(2),273–281 (2004).
  • Grobbelaar JU, Nedbal L, Tichy V. Influence of high frequency light/dark fluctuations on photosynthetic characteristics of microalgae photoacclimated to different light intensities and implications for mass algal cultivation. J. Appl. Phycol.8(4–5),335–343 (1996).
  • Hall DO, Coombs J, Scurlock JMO. Appendix C: biomass production and data. In: Techniques in Bioproductivity and Photosynthesis ( 2nd Edition). Coombs J, Hall DO, Long SP, Scurlock JMO (Eds). Pergamon Press, Oxford, UK, 274–287 (1985).
  • Gifford RM. A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic metabolism. Aust. J. Plant Physiol.1,107–117 (1974).
  • Elawad SH, Gascho GJ, Shih SF. The energy potential of sugarcane and sweet sorghum. In: Energy from Biomass and Wastes IV. Klass DL, Weatherly JW (Eds). Institute of Gas Technology, Chicago, USA, 65–105 (1980).
  • Chini Zittelli G, Rodolfi L, Biondi N, Tredici MR. Productivity and photosynthetic efficiency of outdoor cultures of Tetraselmis suecica in annular columns. Aquaculture261(3),932–943 (2006).
  • Laws EA, Taguchi S, Hirata J, Pang L. High algal production rates achieved in a shallow outdoor flume. Biotechnol. Bioeng.28(2),191–197 (1986).
  • Heussler P, Castillo S, Merino FM. Ecological balance of algal cultures in arid climates: major results of the Peruvian-German microalgae project at Trujillo. Ergebn. Limnol.11,17–22 (1978).
  • Grobbelaar JU. Open semi-defined systems for outdoor mass culture of algae. In: Wastewater for Aquaculture. Grobbelaar JU, Soeder CJ, Toerien DF (Eds). University of OFS Publishers, Series C, 3,24–30 (1981).
  • Tredici MR, Papuzzo T, Tomaselli L. Outdoor mass culture of Spirulina maxima in sea-water. Appl. Microbiol. Biotechnol.24(1),47–50 (1986).
  • Materassi R, Tredici MR, Milicia F et al. Development of a production size system for the mass culture of marine microalgae. In: Energy from Biomass (Volume 5). Palz W, Pirrwitz D (Eds). Reidel Publishing Company Dordrecht, The Netherlands, 150–158 (1984).
  • Murphy DJ. Biotechnology: its impact and future prospects. In: Molecular to Global Photosynthesis (Volume 2). Archer MD, Barber J (Eds). Imperial College Press, London, UK, 649–740 (2004).
  • Burlew JS (Ed.). Algal Culture from Laboratory to Pilot Plant. The Carnegie Institution of Washington, Publication 600, Washington DC, USA, 357 (1953).
  • Borowitzka MA. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol.70 (1–3),313–321 (1999).
  • Molina Grima E. Microalgae, mass culture methods. In: Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation (Volume 3). Flickinger MC, Drew SW (Eds). John Wiley & Sons, NY, USA, 1753–1769 (2004).
  • Tredici MR, Biondi N, Chini Zittelli G, Ponis E, Rodolfi L. Advances in microalgal culture for aquaculture feed and other uses. In: New Technologies in Aquaculture: Improving Production Efficiency, Quality and Environmental Management. Burnell G, Allan G (Eds). Woodhead Publishing Ltd, Cambridge, UK, and CRC Press LLC, Boca Raton, FL, USA, 610–676 (2009).
  • Lehr F, Posten C. Closed photo-bioreactors as tools for biofuel production. Curr. Opin. Biotech.20(3),280–285 (2009).
  • Carvalho AP, Meireless LA, Malcata FX. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog.22(6),1490–1506 (2006).
  • Tredici MR, Chini Zittelli G, Rodolfi L. Photobioreactors. In: Wiley Encyclopedia of Industrial Biotechnology. Flickinger MC, Anderson S (Eds). John Wiley & Sons, Inc., NJ, USA (In press).
  • Weissman JC, Goebel RP, Benemann JR. Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol. Bioeng.31(4),336–344 (1988).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol.26(3),126– 131 (2007).
  • Kok B. Experiments on photosynthesis by Chlorella in flashing light. In: Algal Culture from Laboratory to Pilot Plant. Burlew JS (Ed.). The Carnegie Institution of Washington, Publication 600, Washington DC, USA, 63–158 (1953).
  • Janssen M, Tramper J, Mur LR, Wijffels RH. Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol. Bioeng.81,193–210 (2002).
  • Grobbelaar JU. Turbulence in mass algal cultures and the role of light/dark fluctuations. J. Appl. Phycol.6(3),331–335 (1994).
  • Grobbelaar JU. Upper limits of photosyntyhetic productivity and problems of scaling. J. Appl. Phycol.21(5),519–522 (2009).
  • Janssen M, Slenders P, Tramper J, Muur LR, Wijffels R. Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb. Tech.29(4/5),298–305 (2001).
  • Carlozzi P. Dilution of solar radiation through culture lamination in photobioreactor rows facing South-North: a way to improve the efficiency of light utilization by cyanobacteria ( Arthrospira platensis). Biotechnol. Bioeng.81(3),305–315 (2003).
  • Akkerman I, Janssen M, Rocha J, Wijffels RH. Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy27(11/12),1195–1208 (2002).
  • Zijffers J-W F, Salim S, Janssen M, Tramper J, Wijffels RH. Capturing sunlight into a photobioreactor: ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chem. Eng. J.145,316–327 (2008).
  • Mitra M, Melis A. Optical properties of microalgae for enhanced biofuels production. Optic Express16(26),21807–21820 (2008).
  • Nakajima Y, Ueda R. Improvement of photosynthesis in dense microalgal suspensions by reduction of light harvesting pigments. J. Appl. Phycol.9(6),503–510 (1997).
  • Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci.4,957–969 (2005).
  • Hambourger M, Moore GF, Kramer DM, Gust D, Moore AL, Moore TA. Biology and technology for photochemical fuel production. Chem. Soc. Rev.38,25–35 (2009).
  • Barber J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev.38,185–196 (2009).

▪ Patent

  • Fotosintetica & Microbiologia S.R.L., Florence, Italy. Fotobioreattori a basso costo per la coltura di microalghe. FI 2009 A000167 (Deposit 30 July 2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.