129
Views
42
CrossRef citations to date
0
Altmetric
Review

Transgenic perennial biofuel feedstocks and strategies for bioconfinement

, , , , , , & show all
Pages 163-176 | Published online: 09 Apr 2014

Bibliography

  • Robertson GP, Dale VH, Doering OC et al. Sustainable biofuels redux. Science322(5898),49–50 (2008).
  • Energy Policy Act 2005. HR 6–109th Congress: Energy Policy Act of 2005. Pub. L 109–158 42 USC 15801 (2005).
  • McLaughlin SB, de la Torre Ugarte DG, Garten CT et al. High-value renewable energy from prairie grasses. Environ. Sci. Tech.36(10),2122–2129 (2002).
  • McLaughlin SB, Adams Kszos L. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy28(6),515–535 (2005).
  • Morandini P, Salamini F. Plant biotechnology and breeding: allied for years to come. Trends Plant Sci.8(2),70–75 (2003).
  • Lynd LR, Laser MS, Bransby D et al. How biotech can transform biofuels. Nat. Biotechnol.26(2),169–172 (2008).
  • Gressel J. Transgenics are imperative for biofuel crops. Plant Sci.174(3),246–263 (2008).
  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN. Plants to power: bioenergy to fuel the future. Trends Plant Sci.13(8),421–429 (2008).
  • Sticklen MB. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genet.9(6),433–443 (2008).
  • Tuskan GA, DiFazio S, Jansson S et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science313(5793),1596–1604 (2006).
  • Paterson AH, Bowers JE, Bruggmann R et al. The Sorghum bicolor genome and the diversification of grasses. Nature457(7229),551–556 (2009).
  • Stewart CNJ. Genetically Modified Planet: Environmental Impacts of Genetically Engineered Plants.Oxford University Press, NY, USA (2004).
  • Wolfenbarger LL, Phifer APR. The ecological risks and benefits of genetically engineered plants. Science290(5499),2088–2093 (2000).
  • Stewart CNJ. Biofuels and biocontainment. Nat. Biotechnol.25(3),283–284 (2007).
  • Vogel KP, Jung H-JG. Genetic modification of herbaceous plants for feed and fuel. Crit. Rev. Plant Sci.20(1),15–49 (2001).
  • Mallory-Smith C, Zapiola ML. Gene flow from glyphosate-resistant crops. Pest Manag. Sci.64(4),428–440 (2008).
  • Zapiola ML, Mallory-Smith CA, Thompson JH, Rue LJ, Campbell CK, Butler MD. Gene escape from glyphosate-resistent creeping bentgrass fields: past, present and future. Proc. West. Soc. Weed Sci.60,82 (2007).
  • Zapiola ML, Campbell CK, Butler MD, Mallory-Smith CA. Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. J. Appl. Ecol.45(2),486–494 (2008).
  • Reichman JR, Watrud LS, Lee EH et al. Establishment of transgenic herbicide-resistant creeping bentgrass (Agrostis stoloniferaL.) in nonagronomic habitats. Mol. Ecol.15(13),4243–4255 (2006).
  • Watrud LS, Lee EH, Fairbrother A et al. Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl Acad. Sci. USA101(40),14533–14538 (2004).
  • Wipff JK, Fricker C. Gene flow from transgenic creeping bentgrass (Agrostis stolonifera L.) in the Willamette Valley, Oregon. Int. Turfgrass Soc. Res. J.7,9224–9242 (2001).
  • Belanger FC, Meagher TR, Day PR, Plumley K, Meyer WA. Interspecific hybridization between Agrostis stolonifera and related Agrostis species under field conditions. Crop Sci.43(1),240–246 (2003).
  • Stewart CN, Halfhill MD, Warwick SI. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet.4(10),806–817 (2003).
  • Association of Official Seed Analysts. Rules for Testing Seeds. Stillwater, OK, USA (2002).
  • Dunwell J, Ford CS. Desk study on technologies for biological containment of GM and non-GM crops. Department for Environment, Food and Rural Affairs (2005).
  • Fei S, Nelson E. Estimation of pollen viability, shedding pattern, and longevity of creeping bentgrass on artificial media. Crop Sci.43(6),2177–2181 (2003).
  • Stewart CJ. Pharming in crop commodities. Nat. Biotechnol.26(11),1222–1223 (2008).
  • Mariani C, Beuckeleer MD, Truettner J, Leemans J, Goldberg RB. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature347(6295),737–741 (1990).
  • Luo H, Lyznik LA, Gidoni D, Hodges TK. FLP-mediated recombination for use in hybrid plant production. Plant J.23(3),423–430 (2000).
  • De Block M, Debrouwer D, Moens T. The development of nuclear male sterility system in wheat: expression of the barnase gene under the control of tapetum specific promoters. Theor. Appl. Genet.95(1–2),125–131 (1997).
  • Hanson DD, Hamilton DA, Travis JL, Bashe DM, Mascarenhas JP. Characterization of a pollen-specific cDNA clone from Zea mays and its expression. Plant Cell1(2),173–179 (1989).
  • Zou JT, Zhan XY, Wu HM, Wang H, Cheung AY. Characterization of a rice pollen-specific gene and its expression. Am. J. Bot.81(5),552–561 (1994).
  • Twell D, Wing R, Yamaguchi J, McCormick S. Isolation and expression of an anther-specific gene from tomato. Mol. Gen. Genet.217(2–3),240–245 (1989).
  • Theerakulpisut P, Xu H, Singh MB, Pettitt JM, Knox RB. Isolation and developmental expression of Bcp1, an anther-specific cDNA clone in Brassica campestris. Plant Cell3(10),1073–1084 (1991).
  • Xu H, Knox RB, Taylor PE, Singh MB. Bcp1, a gene required for male fertility in Arabidopsis. Proc. Natl Acad. Sci. USA92(6),2106–2110 (1995).
  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc. Natl Acad. Sci. USA98(11),6522–6527 (2001).
  • Jagannath A, Bandyopadhyay P, Arumugam N, Gupta V, Kumar P, Pental D. The use of spacer DNA fragment insulates the tissue-specific expression of a cytotoxic gene (barnase) and allows high-frequency generation of transgenic male sterile lines in Brassica juncea L. Mol. Breed.8(1),811–823 (2001).
  • Moffatt B, Somerville C. Positive selection for male-sterile mutants of Arabidopsis lacking adenine phosphoribosyl transferase activity. Plant Physiol.86(4),1150–1154 (1988).
  • Tsuchiya T, Toriyama K, Yoshikawa M, Ejiri S, Hinata K. Tapetum-specific expression of the gene for an endo-β-1,3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol.36(3),487–494 (1995).
  • Lee J-Y, Aldemita RR, Hodges TK. Isolation of a tapetum-specific gene and promoter from rice. Int. Rice Res. Newsl.212–213 (1996).
  • Hartley RW. Barnase and Barstar: expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol.202(4),913–915 (1988).
  • Yui R, Iketani S, Mikami T, Kubo T. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1α subunit in anther tapetum causes male sterility. Plant J.34(1),57–66 (2003).
  • He S, Abad AR, Gelvin SB, Mackenzie SA. A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc. Natl Acad. Sci. USA93(21),11763–11768 (1996).
  • Ruiz ON, Daniell H. Engineering cytoplasmic male sterility via the chloroplast genome by expression of β-ketothiolase. Plant Physiol.138(3),1232–1246 (2005).
  • Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. Plant Physiol.145(4),1129–1143 (2007).
  • Daniell H. Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol.20(6),581–586 (2002).
  • Daniell H. Transgene containment by maternal inheritance: effective or elusive? Proc. Natl Acad. Sci. USA104(17),6879–6880 (2007).
  • Ruf S, Karcher D, Bock R. Determining the transgene containment level provided by chloroplast transformation. Proc. Natl Acad. Sci. USA104(17),6998–7002 (2007).
  • Arlen PA, Falconer R, Cherukumilli S et al. Field production and functional evaluation of chloroplast-derived interferon-α2b. Plant Biotechnol. J.5(4),511–525 (2007).
  • Azhagiri AK, Maliga P. Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J.52(5),817–823 (2007).
  • Svab Z, Maliga P. Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc. Natl Acad. Sci. USA104(17),7003–7008 (2007).
  • Davoodi-Semiromi ASN, Daniell H. The green vaccine: a global strategy to combat infectious and autoimmune diseases. Hum. Vacc.5(7),488–493 (2009).
  • Verma D, Samson NP, Koya V, Daniell H. A protocol for expression of foreign genes in chloroplasts. Nat. Protocol.3(4),739–758 (2008).
  • Lee SM, Chung H, Yoo SH et al. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol. Cells21(3),401–410 (2006).
  • Verma D, Jin S, Singh ND, Kolattukudy PE, Daniell H. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. Plant Biotechnol. J. (2009) (In press).
  • Luo K, Duan H, Zhao D et al. “GM-gene-deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol. J.5(2),263–374 (2007).
  • Bradford KJ, Van Deynze A, Gutterson N, Parrott W, Strauss SH. Regulating transgenic crops sensibly: lessons from plant breeding, biotechnology and genomics. Nat. Biotechnol.23(4),439–444 (2005).
  • Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol.25(7),759–761 (2007).
  • Campbell JE, Lobell DB, Field CB. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science324(5930),1055–1057 (2009).

▪ Patents

  • Oliver MJ, Quiseberry JE, Trolinder N, Keim DL. US 5723765 (1998).
  • Oliver MJ, Quisenberry JE, Trolinder N, Keim DL. US 5925808 (1999).
  • Oliver MJ, Quisenberry JE, Trolinder N, Keim DL. US 5977441 (1999).
  • Tomes DT, Huang B, Miller PD. US 5773697 (1998).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.