613
Views
90
CrossRef citations to date
0
Altmetric
Review

Biological pretreatment of lignocellulosics: potential, progress and challenges

, , , &
Pages 177-199 | Published online: 09 Apr 2014

Bibliography

  • Hägeal BH, Himmel ME, Somerville C, Wyman C. Welcome to biotechnology for biofuels. Biotechnol. Biofuel.1(1),1–4 (2008).
  • Rubin EM. Genomics of cellulosic biofuels. Nature454(4),841–845 (2008).
  • Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol.23,22–27 (2005).
  • Zhang YHP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose. noncomplexed cellulase systems. Biotechnol. Bioeng.88,797–824 (2004).
  • Kamm B, Kamm M. Principles of biorefineries. Appl. Microbiol. Biotechnol.64,137–145 (2004).
  • Das H, Singh SK. Useful byproducts from cellulosic wastes of agriculture and food industry – a critical appraisal. Crit. Rev. Food Sci. Nutr.44,77–89 (2004).
  • Sjostrom E. Plant chemistry. Fundamentals and applications (2nd Edition). Academic Press, NY, USA/London, UK (1993).
  • Fengel D. Ultrastructural organization of the cell wall components. J. Polym. Sci.36,383–392 (1971).
  • Kuhad RC, Singh A, Eriksson KL. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol.57,45–125 (1997).
  • Bayer EA, Chanzy H, Lamed R, Shoham Y. Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol.8(5),548–557 (1998).
  • Cara C, Ruiza E, Ballesteros M, Manzanares P, Negro MJ, Castro E. Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel87(6),692–700 (2008).
  • Zheng YZ, Lin HM, Tsao GT. Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol. Prog.14,890–896 (1998).
  • Mosier N, Wyman C, Dale B et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol.96(6),673–686 (2005).
  • Lloyd TA, Wyman CE. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol.96,1967–1977 (2005).
  • Karr WE, Holtzapple T. Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioener.18,189–199 (2000).
  • Holtzapple MT, Humphrey AE, Taylor JD. Energy requirements for the size reduction of poplar and aspen wood. Biotechnol. Bioeng.33,207–210 (1989).
  • Teymouri F, Perez LL, Alizadeh H, Dale BE. Ammonia fiber explosion treatment of corn stover. Appl. Biochem. Biotechnol.113–116, 951–963 (2004).
  • Kim TH, Lee YY. Pretreatment of corn stover by soaking in aqueous ammonia. Appl. Biochem. Biotechnol.124,1119–1132 (2005).
  • Vidal PF, Molinier J. Ozonolysis of lignins improvement of in vitro digestibility of poplar sawdust. Biomass16,1–17 (1988).
  • Pu YQ, Jiang N, Ragauskas AJ. Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol.27(1),23–33 (2007).
  • Zhu JY, Wang GS, Pan XJ, Gleisner R. The status of and key barriers in lignocellulosic ethanol production. A technological perspective. Presented at: The International Conference on Biomass Energy Technologies, Guangzhou, China, 3–5 December 2008.
  • Martínez AT. Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb. Technol.30,425–444 (2002).
  • Moreira MT, Feijoo G, Mester T et al. Role of organic acids in the manganese-independent biobleaching system of Bjerkandera sp. strain BOS55. Appl. Environ. Microbiol.64,2409–2417 (1998).
  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem.274(15),10324–10330 (1999).
  • Kamitsuji H, Honda Y, Watanabe T, Kuwahara M. Production and induction of manganese peroxidase isozymes in a white-rot fungus Pleurotus ostreatus. Appl. Microbiol. Biotechnol.65,287–294 (2004).
  • Pogni R, Baratto MC, Giansanti Set al. Tryptophan-based radical in the catalytic mechanism of versatile peroxidase from Bjerkandera adusta. Biochemistry44,4267–4274.
  • Shrivastava R, Christian V, Vyas BRM. Enzymatic decolorization of sulfonphthalein dyes. Enzyme Microb. Technol.36,333–337 (2005).
  • Kersten PJ, Kirk TK. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium.J. Bacteriol.169(5),2195–2201 (1987).
  • Himmel ME, Ding SY, Johnson DK et al. Biomass recalcitrance. engineering plants and enzymes for biofuels production. Science315(5813),804–807 (2007).
  • Wong DWS. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol.157,174–209 (2009).
  • Dorado J, van Beek TA, Claassen FW, Sierra-Alvarez R. Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. and Trametes versicolor. Wood Sci. Technol.35,117–125 (2001).
  • Fisher K, Puchinger L, Schloffer K, Kreiner W, Messner K. Enzymatic pitch reduction of sulfite pulp on pilot scale. J. Biotechology27,341–348 (1993).
  • Fackler K, Gradinger C, Schmutzer M et al. Biotechnological wood modification with selective white-rot fungi and its molecular mechanisms. Food Technol. Biotechnol.45(3),269–276 (2007).
  • Blanchette RA, Haight JE, Koestler RJ, Hatchfield PB, Arnold D. Assessment of deterioration in archaeological wood from ancient Egypt. J. Am. Inst. Conserv.33,55–70 (1994).
  • Baldrian P. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol.32(1),78–91 (2003).
  • Ruel K, Joseleau JP. Involvement of an extracellular glucan sheath during degradation of Populus wood by Phanerochaete chrysosporium. Appl. Environ. Microbiol.57(2),374–384 (1991).
  • Blanchette RA, Burnes TA, Eerdmans MM, Akhtar M. Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung46,109–115 (1992).
  • Wendler PA, Brush TS, Farrell RL. Biological control of pitch problems in a thermochemical pulp mill. Proc. Int. Symp.Wood Pulp. Chem.6,501–508 (1991).
  • Tengerdy RP, Szakacs G. Bioconversion of lignocellulose in solid substrate fermentation. Biochem. Eng.13(2–3),169–179 (2003).
  • de Souza CGM, Tychanowicz GK, de Souza DF, Peralta RM. Production of laccase isoforms by Pleurotus pulmonarius in response to presence of phenolic and aromatic compounds. J. Basic Microbiol.44(2),129–136 (2004).
  • Linke D, Bouws H, Peters T, Nimtz M, Berger RG, Zorn H. Laccases of Pleurotus sapidus characterization and cloning. J. Agric. Food Chem.53(24),9498–505 (2005).
  • Orth AB, Royse DJ, Tien M. Ubiquity of lignin degrading peroxidases among various wood-degrading fungi. Appl. Environ. Microbiol.59,4017–4023 (1993).
  • Hatakka A, Lundell T, Hofrichter M, Maijala P. Manganese peroxidase and its role in the degradation of wood lignin. In: Applications of Enzymes to Lignocellulosics. Mansfield SD, Saddler JN (Eds). ACS Symposium Series 855, American Chemical Society, WA, USA, 230–243 (2003).
  • Vares T, Kalsi M, Hatakka A. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl. Environ. Microbiol.61(10),3515–3520 (1995).
  • Stajic M, Vukojevic J, Duletic-Lauševic S. Biology of Pleurotus eryngii and role in biotechnological processes. a review. Crit. Rev. Biotechnol.29(1),55–66 (2009).
  • Koenigs JW. Hydrogen peroxide and iron. A proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fiber6(1),66–79 (1974).
  • Flournoy DS, Kirk TK, Highley TL. Changes in pore size and pore volume in wood decayed by the brown-rot fungus Postia (=Poria) placenta.Holgforschung45(5),383–388 (1991).
  • Highley TL, Flournoy DS. Decomposition of cellulose by brown-rot fungi. Recent Adv. Biodeter. Biodeg.II,191–221 (1994).
  • Low GA, Young ME, Martin P, Palfreyman JW. Assessing the relationship between the dry rot fungus Serpula lacrymans and selected forms of masonry. Int. Biodeter. Biodeg.46(2),141–150 (2000).
  • Hammel KE, Kapich AN, Jensen KA Jr, Ryan ZC. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol.30,445–453 (2002).
  • Martinez D, Challacombe J, Morgenstern I et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci. USA106(6),1954–1959 (2009).
  • Kajisa T, Yoshida M, Igarashi K, Katayama A, Nishino T, Samejima M. Characterization and molecular cloning of cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana. J. Biosci. Bioeng.98(1),57–63 (2004).
  • Dietrich D, Crooks C. Gene cloning and heterologous expression of pyranose 2-oxidase from the brown-rot fungus, Gloeophyllum trabeum.Biotechnol. Lett.31(8),1223–1228 (2009).
  • Akhtar M, Attridge MC, Blancheette RA et al. The white-rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. In: Biotechnology in Pulp and Paper Industry. Kuwahara M, Shimada M (Eds). UNI Publishers, Tokyo, Japan, 3–8 (1992).
  • Akhtar M, Attridge MC, Myers GC. Biochemical pulping of loblolly pine chips with selected white-rot fungi. Holzforschung47,36–40 (1993).
  • Ferraz A, Mendonça R, Silva FT. Organosolv delignification of white- and brown-rotted Eucalyptus grandis hardwood. J. Chem. Technol. Biotechnol.75,18–24 (2000).
  • Jensen KA, Houtman CJ, Ryan ZC, Hammel KE. Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl. Environ. Microbiol.67,2705–2711 (2001).
  • Schilling JS, Jellison J. Metal accumulation without enhanced oxalate secretion in wood degraded by brown rot fungi. Appl. Environ. Microbiol.72,5662–5665 (2006).
  • Zhang XY, Xu CY, Wang HX. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J. Biosci. Bioeng.104,149–151 (2007).
  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T. Evaluation of pretreatment with Pleurotus ostreatus for enzyme hydrolysis of rice straw. J. Biosci. Bioeng.100,637–643 (2005).
  • Findlay WPK. Soft rot of timber – a review. J. Ind. Acad. Wood Sci.15,1–11 (1984).
  • Blanchette RA. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad.46,189–204 (2000).
  • Filley TR, Blanchette RA, Simpson E, Fogel M. Nitrogen cycling by unique wood decay fungi in the King Midas tomb, Gordion, Turkey. Proc. Natl Acad. Sci. USA98,13346–13350 (2001).
  • Blanchette RA, Obst JR, Timell TE. Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung48,34–42 (1994).
  • Lee JW, Gwak KS, Park JY et al. Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J. Microbiol.45(6),485–491 (2007).
  • Blanchette RA. A guide to wood deterioration caused by fungi and insects. In: The Conservation of Panel Paintings. Dardes K, Rothe A (Eds). Getty Conservation Institute, Los Angeles, CA, USA, 55–68 (1998).
  • Schwarze FW. Wood decay under the microscope. Fungal Biol. Rev. DOI.10.1016/j.fbr.2007.09.001 (2007) (In press).
  • Martinez D, Berka RM, Henrissat B et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina).Nat. Biotechnol.26(5),553–560 (2008).
  • Blanchette RA, Nilsson T, Daniel GF et al. Biological degradation of plant. In: Archaeological Plant. Properties, Chemistry and Preservation. Rowell RM, Barbour J (Eds). American Chemical Society, WA, USA 147–174 (1990).
  • Eriksson KEL, Blanchette RA, Ander P. Biochemistry of lignin degradation. In: Microbial and Enzymatic Degradation of Plant and Plant Components. Springer Verlag, Berlin, Germany, 253–307 (1990).
  • Singh AP, Butcher JA. Bacterial degradation of plant cell walls: a review of degradation patterns. J. Inst. Plant Sci.12,143–157 (1991).
  • Daniel GF, Nilsson T. Development in the study of soft rot and bacterial decay. In: Forest Products Biotechnology. Bruce A, Palfreymann JW (Ed.). Tayler & Francis Ltd, London, UK 37–62 (1998).
  • Kim YS. Micromorphology of degraded archaeological pine plant in waterlogged situation. Material u. Organismen24,271–286 (1989).
  • Singh AP, Wakeling RN. Bacteria are important degraders of cooling tower timbers. Int. Res Group Plant Preserv. IRG/WP Document No. 95–10128 (1995).
  • Kim YS, Singh AP. Micromorphological characteristics of waterlogged archaeological plants attacked by marine microorganisms. In: Recent Advances in Plant Anatomy. Donaldson LA (Ed.). New Zealand Forest Research Institute, New Zealand 389–399 (1996).
  • Singh AP, Wakeling RN. Presence of widerspread bacterial attacks in preservative treated cooling tower timbers. New Zeal. For. Sci.27,79–85 (1997).
  • Daniel GF, Nilsson T, Singh AP. Degradation of lignocellulosics by unique tunnel forming bacteria. Can. J. Microbiol.33,943–948 (1987).
  • Daniel GF, Nilsson T. Ultrastructural observation on plant degrading erosion bacteria. Int. Res. Group Plant Preserv. IRG/WP Document No. 1283 (1986).
  • Nilsson T, Singh AP. Cavitation bacteria. Int. Res. Group Plant Preserv. IRG/WP Document No. 1235 (1984).
  • Crawford DL, McCov E, Harkin TM, Jones P. Production of microbial protein from waste by Thermononospora fusca, a thermophilic actinomycete. Biotechnol. Bioeng.15,833–843 (1973).
  • Rüttimann C, Vicuña R, Mozuch MD, Kirk TK. Limited bacterial mineralization of fungal degradation intermediates from synthetic lignin. Appl. Environ. Microbiol.57,3652–3655 (1991).
  • Björdal CG, Nilsson T, Daniel G. Microbial decay of waterlogged archaeological wood found in Sweden. Applicable to archaeology and conservation. Int. Biodeter. Biodeg.43,63–71 (1999).
  • Watanabe Y, Shinzato N, Fukatsu T. Isolation of actinomycetes from termites’ guts. Biosci. Biotechnol. Biochem.67,1797–1801 (2003).
  • Ko CH, Chen WL, Tsai CH, Jane WN et al.Paenibacillus campinasensis BL11. A wood material-utilizing bacterial strain isolated from black liquor. Bioresour. Technol.98,2727–2733 (2007).
  • Yang JS, Ni JR, Yuan HL, Wang ET. Biodegradation of three different wood chips by Pseudomonas sp. PKE117. Int. Biodeter. Biodeg.60,90–95 (2007).
  • Kim YS, Singh AP, Nilsson T. Bacteria as important degraders in water-logged archaeological wood. Holzforschung50,389–392 (1996).
  • Singh AP, Nilsson J, Daniel GF. Bacterial attack of Pinus sylvestris wood under near anaerobic conditions. J. Inst. Wood Sci.12(3),143–157 (1990).
  • Antai SP, Crawford DL. Degradation of softwood, hardwood, and grass lignocelluloses by two Streptomyces strains. Appl. Environ. Microbiol.42(2),378–380 (1981).
  • Njoku CC, Antai SP. Lignocellulose degradation and crude protein formation by three ligninolytic Streptomyces strains. Lett. Appl. Microbial.4,133–136 (1987).
  • Iqbal M, Mercer DK, Miller PGG, McCarthy AJ. Thermostable extracellular peroxidases from Streptomyces thermoviolaceus. Microbiology140,1457–1465 (1994).
  • Burke NS, Crawford DL. Use of azo dye ligand chromatography for the partial purification of a novel extracellular peroxidase from Streptomyces viridosporus T7A. Appl. Microbiol. Biotechnol.49(5),523–530 (1998).
  • Mason MG, Ball AS, Brandon JR, Silkstone G, Nicholls P, Wilson MT. Extracellular heme peroxidase in actinomycetes. a case of mistaken identity. Appl. Environ. Microbiol.67,4512–4519 (2001).
  • Crawford DL. Biological, Biochemical and Biomedical Aspects of Actinomycetes. Szabo G, Biro S, Goodfellow M (Eds). Part B, FEMS Symp. 34, Akademiai Kiado, Budapest, Hungary, 715 (1986).
  • Geib SM, Filley TR, Hatcher PG et al. Lignin degradation in wood-feeding insects. Proc. Natl Acad. Sci. USA105(35),12932–12937 (2008).
  • Cohen WE. An analysis of termite (Eutermes exitiosus) mound material. J. Counc. Sci.6,166–168 (1933).
  • Zimmerman PR, Greenberg JP, Wandiga SOet al. Termites. A potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science218,563–565 (1982).
  • Warnecke F, Luginbuehl P, Ivanova N et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature450(7169),560–565 (2007).
  • Ohkuma M, Yuzawa H, Amornsa W et al. Molecular phylogeny of Asian termites (Isoptera ) of the families Termitidae and Rhinotermitidae based on mitochondrial COII sequences. Mol. Phylogenet. Evol.31,701–710 (2004).
  • Taprab Y, Johjima T, Maeda Y et al. Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus-growing termites in Thailand. Appl. Environ. Microbiol.71(12),7696–704 (2005).
  • Scharf ME, Boucias DG. Potential of termite-based biomass pretreatment strategies for use in bioethanol production. Insect Science. (2009) (In Press).
  • Ke J, Sun JZ, Nguyen H et al.In situ profiling of oxygen in two wood-feeding termites and its role in lignin modification. Insect Sci. (2009) (In press).
  • Scharf ME, Tartar A. Termite digestomes as sources for novel lignocellulases. Biofuels Bioproducts Biorefining-Biofpr.2(6),540–552 (2008).
  • Wheeler MM, Tarver MR, Coy MR, Scharf ME. Characterization of four esterase genes and esterase activity from the gur of the termite Reticulitermes flavipes. Arch. Insect Biochem. Physiol. DOI. 10.1002/arch.20333 (2009) (Epub ahead of print).
  • Galbe M, Zacchi G. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol.59,618–628 (2002).
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic material from ethanol production. A review. Bioresour. Technol.83,1–11 (2002).
  • Hatakka AI. Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Appl. Microbial. Biotechnol.18,350–357 (1983).
  • Muller HW, Trosch W. Screening of white-rot fungi for biological pretreatment of heat straw for biogas production. Appl. Microbial. Biotechnol.24,180–185 (1986).
  • Guerra A, Mendonça R, Ferraz A. Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora.Enzyme Microbiol. Technol.33,12–18 (2003).
  • Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T. Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J. Biotechnol.103,273–280 (2003).
  • Chahal PS, Chahal DS. Lignocellulose waste: biological conversion. In: Bioconversion of Waste Materials to Industrial Products (2nd Edition). Martin AM, (Ed.). Blakie Academic & Professional, London, UK, 376–422 (1999).
  • Yu J, Zhang J, He J, Liu Z, Yu Z. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. Technol.100,903–908 (2009).
  • Zhu JY, Wang GS, Pan XJ, Gleisner R. Specific surface for evaluating wood size-reduction and pretreatment efficiencies. Chemical Eng. Sci.64(3),474–485 (2009).
  • Department of Energy. Breaking the biological barriers to cellulosic ethanol. A joint Research Agenda. A research road map resulting from the biomass to biofuel workshop sponsored by The Dept of Energy. Rockville, MD, USA, 7–9 December 2005.
  • Lynd LR. Overview and evaluation of fuel ethanol from celllulosic bomass. Technology, economics, the environment, and policy. Ann. Rev. Energy Environ.21,403–465 (1996).
  • Ramos LP. The chemistry involved in the steam treatment of lignocellulosic material. Quimica Nova.26,863–871 (2003).
  • Parisi F. Advances in lignocellulosics hydrolysis and in the utilization of the hydrolysates. Adv. Biochem. Eng. Biotechnol.38,53–87 (1989).
  • Tanahashi M. Characterization and degradation mechanisms of wood components by steam explosion and utilization of exploded wood. Wood Res.77,49–117 (1990).
  • Palmqvist E, Hahn-Hägerdal B, Galbe M et al. Design and operation of a bench-scale process development unit for the production of ethanol from lignocellulosics. Bioresour. Technol.2,171–179 (1996).
  • Klinke HB, Olssomn L, Thomsen AB, Ahring BK. Potential inhibitiors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae. wet oxidation and fermentation by yeast. Biotechol. Bioeng.81,738–747 (2003).
  • Gregg D, Saddler JN. A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl. Biochem. Biotechnol.57–58(1),711–727 (1996).
  • Mtui G. Trends in industrial and environmental biotechnology research in Tanzania. Afr. J. Biotechnol.6(25),2860–2567 (2007).
  • Ubalua AU. Cassava wastes. Treatment options and value addition alternatives. Afr. J. Biotechnol.6(18),2065–2073 (2007).
  • Demirbas A. Utilization of urban and pulping wastes to produce synthetic fuel via pyrolysis. Energy Sources Part A. Recovery, Util. Environ. Effects24(3),205–213(2002).
  • Nazareth SW, Sampy JD. Production and characterisation of lignocellulases of Panus tigrinus and their application. Int. Biodeter. Biodeg.52(4),207–214 (2003).
  • Moldes D, Lorenzo M, Sanromán MA. Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. J. Biotechnol. Lett.26(4),327–330 (2004).
  • Couto SR, López E, Sanromán MA. Utilisation of grape seeds for laccase production in solid-state fermentors. J. Food Eng.74(2),263–267 (2006).
  • Couto SR, Sanromán MÁ. Effect of two wastes from groundnut processing on laccase production and dye decolourisation ability. J. Food Eng.73(4),388–393 (2006).
  • Mishra A, Kumar S. Cyanobacterial biomass as N -supplement to agro-waste for hyper-production of laccase from Pleurotus ostreatus in solid state fermentation. Process Biochem.42(4),681–685 (2007).
  • Minussi RC, Miranda MA, Silva JA et al. Purification, characterization and application of laccase from Trametes versicolor for colour and phenolic removal of olive mill wastewater in the presence of 1- hydroxybenzotriazole. Afr. J. Biotechnol.6(10),1248–1254 (2007).
  • Couto SR, Domínguez A, Sanromán A. Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solidstate cultures of Phanerochaete chrysosporium.Biodegradation.12(5),283–289 (2001).
  • Wuyep PA, Khan AU, Nok AJ. Production and regulation of lignin degrading enzymes from Lentinus squarrosulus (mont.). Afr. J. Biotechnol.2(11),444–447 (2003).
  • Velázquez-Cedeño MA, Farnet AM, Ferré E. Variations of lignocellulosic activities in dual cultures of Pleurotus ostreatus and Trichoderma longibrachiatum on unsterilized wheat straw. Mycologia96(4),712–719 (2004).
  • Couto SR, Sanromán MA. Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J.22(3),211–219 (2005).
  • Alam Z, Mahmat ME, Muhammad N. Solid state bioconversion of oil palm biomass for ligninase enzyme production. Artif. Cells, Blood Substit. Biotechnol.33(4),457–466 (2005).
  • Asgher M, Asad MJ, Legge RL. Enhanced lignin peroxidase synthesis by Phanerochaete chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World J. Microbiol.99(16),7623–7629 (2006).
  • Songulashvili G, Elisashvili V, Penninckx M et al. Bioconversion of plant raw materials in value-added products by Lentinus edodes and Pleurotus spp. Int. J. Med. Mushrooms7(3),467–468 (2007).
  • Elisashvili V, Kachlishvili E, Penninckx MJ. Lignocellulolytic enzymes profile during growth and fruiting of Pleurotus ostreatus on wheat straw and tree leaves. J. Acta Microbiol. Immunol. Hung.55(2),157–168 (2008).
  • Emtiazi G, Nahvi I. Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenergy.19(1),31–37 (2000).
  • El-hawary FI, Mostafa YS. Factors affecting cellulase production by Trichoderma koningii. J. Acta Alimentaria30(1),3–13 (2001).
  • Raj K, Singh R. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and β-glucosidase production by co-cultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164. Appl. Biochem. Biotechnol.96(1–3),71–82 (2001).
  • Ojumu TV, Solomon BO, Betiku E, Kolawole S, Bamikole A. Cellulase production by Aspergillus flavus linn isolate NSPR 101 fermented in sawdust, bagasse and corncob. Afr. J. Biotechnol.2(6),150–152 (2003).
  • Wen Z, Liao W, Chen S. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol.96(4),491–499 (2005).
  • Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y. Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol.99(16),7623–7629 (2008).
  • Gomes DC, Lanfredi RM, Pinto RM, De Souza W. Description of Trichuris n.sp. (Nematoda Trichuridae ) from a Brazilian rodent by light and scanning electron microscopy. Mem. Inst. Oswaldo Cruz.87,1–10 (1992).
  • Silveira FQP, Ximenes FA, Cacais AOG et al. Hydrolysis of xylans by enzyme systems from solid cultures of Trichoderma harzianum strains. Braz. J. Med. Biol. Res.32,947–952 (1999).
  • Gutierrez-Correa M, Tengerdy RP. Xylanase production of fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol. Lett.20,45–47 (1998).
  • Seyis I, Aksoz N. Effect of carbon and nitrogen sources on xylanase production by Trichoderma harzianum 1073 D3. Int. Biodeter. Biodeg.55,115–119 (2005).
  • Kuhad RC, Kapoor M, Chaudhary K. Production of xylanase from Streptomyces sp. M-83 using cost-effective substrates and its application in improving digestibility of monogastric animal feed. Indian J. Microbiol.46,109–119 (2006).
  • Thurston CF. The structure and function of fungal laccases. Microbiology140,19–26 (1994).
  • Levin L, Forchiassin F, Viale A. Ligninolytic enzyme production and dye decolorization by Trametes trogii. application of the Plackett–Burman experimental design to evaluate nutritional requirements, Process Biochem.40,1381–1387 (2005).
  • Mita DG, Diano N, Grano V et al. The process of thermodialysis in bioremediation of waters polluted by endocrine disruptors. J. Mol. Catalysis B. Enzymatic58(1–4),199–207 (2009).
  • Mikolasch A, Schauer F. Fungal laccases as tools for the synthesis of new hybrid molecules and biomaterials. Appl. Microbiol. Biotechnol.82,605–624 (2009).
  • Widsten P, Kandelbauer A. Laccase applications in the forest products industry. a review. Enzyme Microb. Technol.42,293–307 (2008).
  • Palonen H, Viikari L. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol. Bioeng.86,550–557 (2004).
  • Martínez AT. High redox potential peroxidases. In: Industrial Enzymes. Structure, Function and Applications. Polaina J, MacCabe AP (Eds). Springer, Dordrecht, The Netherlands 475–486 (2007).
  • Ayala M, Pickard MA, Vazquez-Duhalt R. Fungal enzymes for environmental purposes, a molecular biology challenge, J. Mol. Microbiol. Biotechnol.15,172–180 (2008).
  • Mazumder S, Basu SK, Mukherjee M. Laccase production in solid-state and submerged fermentation by Pleurotus ostreatus. Engineer. Life Sci.9(1),45–52 (2009).
  • Qiu W, Chen H. Solid state fermentation of a Mycelia sterilia laccase using steam-exploded wheat straw. World J. Microbiol. Biotechnol.24(2),219-224 (2008).
  • Moldes D, Gallego PP, Rodriguez CS, Sanroman A. Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnol. Lett.25,491–495 (2003).
  • José G, Marta P, Susana RC, Sanromán M. Chestnut shell and barley bran as potential for laccase production by Coriolopsis rigida under solid-conditions. J. Food Eng.68,315–319 (2005).
  • Susana RC, Sanroman MA. Coconut flesh: a novel raw material for laccase production by Trametes hirsuta under solid-state conditions. Application to Lissamine Green B decolourization. J. Food Eng.71,208–213 (2005).
  • Dinis MJ, Bezerra RMF, Nunes F et al. Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour. Technol.100(20),4829–4835 (2009).
  • Lang E, Nerud F, Novotna E, Martens R. Production of ligninolytic exoenzymes and 14C-pyrene mineralization by Pleurotus sp. in lignocellulose substrate. Folia Microbiol.41,489–493 (1996).
  • Vares T, Kalsi M, Hatakka A. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl. Environ. Microbiol.61(10),3515–3520 (1995).
  • Martinez AT, Camarero S, Guillen F et al. Progress in biopulping of non-woody materials. chemical, enzymatic and ultrastructural aspects of wheat-straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiol. Rev.13,265–273 (1994).
  • Golovleva LA, Leontievsky AA, Maltseva OV, Myasoedova NM. Ligninolytic enzymes of the fungus Panustigrinus 8/18. biosynthesis, purification and properties. J. Biotechnol.30,71–77 (1993).
  • Sarnthima R, Khammuang S, Svasti J. Extracellular ligninolytic enzymes by Lentinus polychrous Lév. under solid-state fermentation of potential agro-industrial wastes and their effectiveness in decolorization of synthetic dyes. Biotechnol. Bioproc. Engineer.14,513–522 (2009).
  • Mekala NK, Singhania RR, Sukumaran RK, Pandey A. Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30. statistical optimization of process parameters. Appl. Biochem. Biotechnol.151(2–3),122–31 (2008).
  • Singhania RR, Sukumaran RK, Pandey A. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl. Biochem. Biotechnol.142(1),60–70 (2007).
  • Latifian M, Hamidi-Esfahani Z, Barzegar M. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol.98(18),3634–3637 (2007).
  • Jan HD, Chen KS. Production and characterization of thermostable cellulases from Streptomyces transformant T3–1. World J. Microbiol. Biotechnol.19,263–268 (2003).
  • Beg QK, Bhusan B, Kapoor M, Hoondal GS. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11–3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microbiol. Technol.27,459–466 (2000).
  • Kirk TK, Jeffries TW. Roles for microbial enzymes in pulp and paper processing. In: Enzymes for pulp and paper processing. ACS symposium series 655. Jeffries TW and Viikari L (Eds). American Chemical Society, WA, USA 2–14 (1996).
  • Nair SG, Sindhu R, Shashidhar S. Fungal xylanase production under solid state and submerged fermentation conditions. Afr. J. Microbiol. Res.2,082–086 (2008).
  • Sindhu I, Chhibber S, Capalash N, Sharma P. Production of cellulase-free xylanase from Bacillus megaterium by solid state fermentation for biobleaching of pulp. Curr. Microbiol.53,167–172 (2006).
  • Jeya M, Thiagarajan S, Gunasekaran P. Improvement of xylanase production in solid-state fermentation by alkali tolerant Aspergillus versicolor MKU3. Lett. Appl. Microbiol.41,175–178 (2005).
  • Betini HA, Michelin M, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli MLTM. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioproc. Biosyst. Eng.32,819–824 (2009).
  • Bhavsar K, Shah P, Soni SK, Khire JM. Influence of pretreatment of agriculture residues on phytase production by Aspergillus niger NCIM 563 under submerged fermentation conditions. Afr. J. Biotechnol.7(8),1101–1106 (2008).
  • Mabrouk MEM, El-Ahwany AMD. Production of β-mannanase by Bacillus amylolequifaciens cultured on potato peels. Afr. J. Biotechnol.7(8),1123–1128 (2008).
  • McCleary BV. β-D-mannanases. Methods Enzymol.160,596–610(1988).
  • Wong KKY, Saddler JN. Applications of hemicellulases in the food, feed, and pulp and paper industries. In: Hemicellulose and hemicellulases. Coughlan MP, Hazlewood GP (Eds). Portland Press Ltd, London, UK, 127–143 (1993).
  • Rao DE, Rao KV, Reddy TP, Reddy VD. Molecular characterization, physicochemical properties, known and potential applications of phytases. An overview. Crit. Rev. Biotechnol.29(2),182–98 (2009).
  • Gupta R, Gigras P, Mohapatra H, Goswami VK et al. Microbial α-amylases. A biotecnological perspective. Process Biochem.38,1599–1616 (2004).
  • Crabb WD, Mitchinson C. Enzymes involved in the processing of starch to sugars. Trends Biotechnol.15,349–352 (1997).
  • Botella C, de Ory I, Webb C et al. Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem. Eng. J.26(2–3),100–106 (2005).
  • Botella C, Diaz A, de Ory I, et al. Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Proc. Biochem.42(1),98–101 (2007).
  • Silva EM, Machuca A, Milagres AMF. Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett. Appl. Microbiol.40(4),283–288 (2005).
  • Oliveira LA, Porto ALF, Tambourgi EB. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresour. Technol.97(6),862–867 (2006).
  • Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J. Polym. Environ.10,39–48 (2002).
  • Osada M, Sato T, Watanabe M, Adchiri T, Arai K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Enrgy Fuel.18,327–333 (2004).
  • Yoshida T, Matsumura Y. Gasification of cellulose, xylan, and lignin mixtures in supercritical water. Ind. Eng. Chem. Res.40,5469–5474 (2001).
  • Montague L. Lignin process design confirmation and capital cost evaluation. Report 42002/02 National Renewable Energy Laboratory, CO, USA (2003).
  • Perez JM, Rodriguez F, Alonos MV, Oliet M, Echeverría JM. Characterization of novolac resin substituting phenol by ammonium lignosulfonate as filler of extender. BiRes.2(2),270–283 (2007).
  • Howard RL, Abotsi E, van Rensburg JEL, Howard S. Lignocellulose biotechnology. Issues of bioconversion and enzyme production. Afr. J. Biotechnol.2(12),602–619 (2003).
  • Walton NJ, Mayer MJ, Narbad A. Molecules of interest. Vanillin. Phytochemistry.63,505–515 (2003).
  • Priefert H, Rabenhorst J, Steinbüchel A. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol.56,296–314 (2001).
  • Akamatsu Y, Takahashi M, Shimada M. Production of oxalic acid by wood-rotting basidiomycetes from low and high nitrogen culture media. Material Organismen28,251–264 (1994).
  • Dutton MV, Evans CS. Oxalate production by fungi. Its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol.42,881–895 (1996).
  • Takao S. Organic acid production by basidiomycetes. I. Screening of acid-producing strains. Eur. J. Appl. Microbiol.13,732–737 (1965).
  • Glakin S, Vares T, Kalsi M, Hatakka A. Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol. Tech.12,267–271 (1998).
  • Hofrichter M, Vares T, Scheibner K, Galkin S, Sipilä J, Hatakka A. Mineralization and solubilization of synthetic lignin (DHP) by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J. Biotechnol.67,217–228 (1999).
  • Qi B, Yao R. L-lactic acid production from Lactobacillus casei by solid state fermentation using rice straw. Bioresources2(3),419–429 (2007).
  • Ribbons RW. Chemicals from lignin. Phil. Trans. R. Soc. Lond. Ser. A.321,485–494 (1987).
  • Ogundana SK, Okogbo O. The nutritive value of some Nigerian edible mushrooms. In: Mushroom Science XI. In: Proc. 11th Inter. Scientific Congress on Cultivation of Edible Fungi. Australia 123–131(1981).
  • Gunde-Cimerman N. Medicinal value of the genus Pleurotus (Fr.) P. Darst. (Agaricales s.l., Basidiomycetes). Int. J. Med. Mushrooms1(1),69–80 (1999).
  • Chovol V, Opletal LO, Jahodar L, Patel AV, Dacke CG, Blunden G. Ergota-4,6,8,22-tetraen-3-one from the edible fungus Pleurotus ostreatus (oyster fungus). Phytochemistry45,1669–1671 (1997).
  • Wasser SP, Weis AL. Medicinal properties of substances occurring in higher basidiomycetes mushrooms. Current perspectives (review). Inter. J. Medical Mushrooms1(1),31–62 (1999).
  • She QB, Ng TB, Liu WK. A novel lectin with potent immunomodulatory activity isolated from both fruiting bodies and cultural mycelia of the edible mushroom Volvariella volvacea. Biochem. Biophys. Res.Commun.247,106–111 (1998).
  • Balan V, Chundawat SPS, Dale, BE. Improvements in glucan coversionin rice straw while producing valuable isolates using solid state fermentation and the AFEX process. Presented at: 29th Symposium on Biotechnology for Fuels and Chemicals. CO, USA, 29 April– 2 May 2007.
  • Keller FA, Hamilton JE, Nguyen QA. Microbial pretreatment of biomass. Potential for reducing severity of thermochemical biomass pretreatment. J. Appl. Biochem. Biotechnol.105(1–3),27–41 (2003)
  • Sawada T, Nakamura Y, Kobayashi F. Effects of fungal pretreatment and steam explosion on enzymatic saccharification of plant biomass. Biotechnol. Bioeng.48,719–724 (1995).
  • Akhtar M, Blanchette RA, Myers G, Kirk TK. An overview on biomechanical pulping research. In: Environmentally Friendly Technologies For the Pulp Paper Industry. Young RA, Akhtar M (Eds). TAPPI Press, GA, USA 309–340 (1998).
  • Paice MG, Bourbonnais R, Reid ID, Archibald FS, Jurasek L. Oxidative bleaching enzymes: a review. J. Pulp Paper Sci.21,J280–J284 (1995).
  • Kirk TK, Akhtar M, Blanchette RA. Biopulping: seven years of consortia research. In: TAPPI Biological Sciences Symposium. TAPPI Press, GA, USA (1994).
  • Dorado J, van Beek TA, Claassen FW, Sierra-Alvarez, R. Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. and Trametes versicolor.Wood Sci. Technol.35,117–125 (2001).
  • Eriksson KE, Vallander L. Biomechanical pulping. In: Lignin Biodegradation. Microbiology, Chemistry, and Potential Applications. Kirk TK, Higuchi T, Chang H-M, (Eds). 2 CRC Press, Boca Raton, FL, USA, 213–224 (1982).
  • Oriaran TP, Jr Labosky P, Blankenhorn PR. Kraft pulp and paper making properties of Phanerochaete chrysosporium degraded aspen. TAPPI J.73,147–152 (1990).
  • Oriaran TP, Labosky P Jr, Blankenhorn PR. Kraft pulp and paper making properties of Phanerochaete chrysosporium degraded red oak. Wood Fiber Sci.23,316–327 (1991).
  • Ferraz AA, Guerra A, Mendonc R et al. Technological advances and mechanistic basis for fungal biopulping. Enzyme Microbiol. Technol.43,178–185 (2008).
  • Camarero S, Ibarra D, Martínez MJ, Martinez AT. Lignin-derived compounds as efficient laccase mediators for decolourisation of different types of recalcitrant dyes. Appl. Environ. Microbiol.71,1775–1784 (2005).
  • Ibarra D, Chávez MI, Rencoret J et al. Structural modification of eucalypt pulp lignin in a totally chlorine free bleaching sequence including a laccase-mediator stage. Holzforschung61,634–646 (2007).
  • Kirk TK, Koning Jr JW, Burgess RR et al. Biopulping. A Glimpse of the Future? Res. Rep. FPL-RP-523. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, WI, USA (1993).
  • Akhtar M, Blanchette RA, Kirk TK. Microbial delignification and biomechanical pulping. Advances in Biochemical Engineering/Biotechnology, Springer-Verlag, Berlin, Heidelberg, Germany 57,159–195 (1997).
  • Akhtar M, Kirk TK, Blanchette RA. Biopulping. An overview of consortia research. In: Biotechnology in the pulp and paper industry, Facultas-Universitätsverlag, Berggasse 5, A-1090 Wien, Austria, 187–192 (1996).
  • Messner K, Masek S, Srebotnik E, Akhtar M, Scott GM. Fungal pretreatment of wood chips for chemical pulping. In: Biotechnology in Pulp and Paper Industry. Kuwahara A, Shimada M (Eds). UNI Publishers, Tokyo, Japan, 9–13 (1992).
  • Fisher K, Messner K. Reducing troublesome pitch in pulp mills by lipolytic enzymes. Tappi J.75,130–134 (1992).
  • Wendler PA, Brush TS, Farrell RL. Biological control of pitch problems in a thermochemical pulp mill. Proceedings of the 6th international symposium on wood and pulping chemistry, Melbourne, Australia, 501–508 (1991).
  • Fisher K, Messner K. Biological pitch reduction of sulfite pulp on pilot scale. In: Biotechnology in Pulp and Paper Industry. Kuwahara A, Shimada M (Eds). UNI Publishers, Tokyo, Japan, 169–174 (1992).
  • Hunt C, Kenealy W, Horn E, Houtman C. A biopulping mechanism. Creation of acid groups on fiber. Holzforschung58,434–439 (2004).
  • Zhang X, Yu H, Huang H, Liu Y. Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegrad.60(3),159–164 (2007).
  • Okano K, Kitagawa M, Sasaki Y, Watanabe T. Conversion of Japanese red cedar (Cryptomeria japonica ) into a feed for ruminants by white-rot basidiomycetes. Animal Feed. Sci. Technol.120,235–243 (2005).
  • Yu H, LI L, Zhang X. Effects of wood species and enzyme production on lignocellulose degradation during the biodegradation of three native woods by Trametes versicolor. Forest Products J.58(4),62–65 (2008).
  • Hakala TK, Maijal P, Konn J, Hatakka A. Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies ) wood. Enzyme Microbiol. Technol.34(3–4),255–263 (2004).
  • Conesa A, van den Hondel CAMJJ, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger. Appl. Environ. Microbial.66(7),3016–3023 (2000).
  • Tsukihara T, Honda Y, Sakai R, Watanabe T, Watanabe T. Exclusive overproduction of recombinant versatile peroxidase MnP2 by genetically modified white rot fungus, Pleurotus ostreatus. J. Biotechnol.126(4),431–439 (2006).
  • Catherine M, Ludovic O, Mohamed C. Heterologous production of a laccase from the basidomycete Pycnoporus cinnabarinus in the dimorphic yeast yarrowia lipolytica.FEMS Yeast Res.5(6–7),635–646 (2005).
  • Wang W, Wen XH. Expression of lignin peroxidase H2 from P. chrysosporium by multi-copy recombinant Pichia strain. J. Environ. Sci.21(2),218–222 (2009).
  • Cabana H, Alexandre C, Agathos SN, Jones JP. Immobilization of laccase from the white rot fungus Coriolopsis polyzona and use of the immobilized biocatalyst for the continuous elimination of endocrine disrupting chemicals. Bioresour. Technol.100(14),447–3458 (2009).
  • Zhang JB, Xu ZQ, Chen H, Zong Y. Removal of 2,4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor. Biochem. Eng. J.45(1),54–59 (2009).
  • Qiu HJ, Li Y, Zhou GP et al. Immobilization of lignin peroxidase on nanoporous gold: enzymatic properties and in situ release of H2O2 by co-immobilized glucose oxidase. Bioresour. Technol.100(17),3837–3842 (2009).
  • Hu MR, Chao YP, Zhang GQ, Yang XQ, Xue ZQ, Qian SJ. Molecular evolution of Fome lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro. Biomol. Eng24(6),619–624 (2007).
  • Ryu K, Hwang SY, Kim KH, Kang JH, Lee EK. Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2, 4-dichlorophenol degradability and H2O2 stability. J. Biotechnol.133(1),110–115 (2008).
  • Widsten P, Kandelbauer A. Laccase applications in the forest products industry. A review. Enzyme Microbiol. Technol.42(4),293–307 (2008).
  • Sealey J, Ragauskas AJ. Residual lignin studies of laccase-delignified kraft pulps. Enzyme Microbiol. Technol.23(7–8),422–426 (1998).
  • Camarero S, Ibarra D, Martínez ÁT, Romero J, Gutiérrezc A, del Rí JC. Paper pulp delignification using laccase and natural mediators. Enzyme Microbiol. Technol.40(5),1264–1271 (2007).
  • Ibarra D, Camarero S, Romero J, Martínez MJ, Martínez AT. Integrating laccase-mediator treatment into an industrial-type sequence for totally chlorine-free bleaching of eucalypt kraft pulp. J. Chem. Technol. Biotechnol.81(7),1159–1165 (2006).
  • Tomšovský M, Popelárová P, Baldrian P. Production and regulation of lignocellulose-degrading enzymes of Poria -like wood-inhabiting basidiomycetes. Folia microbiologica54(1),74–80 (2009).
  • Augusto MPC, Carolina F, Marcela A, Loreto S, Rafael V. Manganese affects the production of laccase in the basidiomycete. Ceriporiopsis subvermispora. FEMS Microbiol. Lett.275(1),139–145 (2007).
  • Chen W, Zhao Z, Chen S-F, Li Y-Q. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour. Technol.99(8),3187–3194 (2008).
  • Elissetche J-P, Ferraz A, Freer J, Rodríguez J. Enzymes produced by Ganoderma australe growing on wood and in submerged cultures. World J. Microbiol. Biotechnol.23(3),429–434 (2007).
  • Elisashvili V, Penninckx M, Kachlishvili Eet al.Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour. Technol.99(3),457–462 (2008).
  • Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete P. chrysosporium. Fungal Genet. Biol.44(2),77–87 (2007).
  • Vares T, Kalsi M, Hatakka A. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by phlebia radiata during solid-state fermentation of wheat straw. Appl. Environ. Microbiol.61(10),3515–3520 (1995).
  • Maijala P, Kleen M, Westin Cet al. Biomechanical pulping of softwood with enzymes and white-rot fungus Physisporinus rivulosus. Enzyme Microbiol. Technol.43(2),169–177 (2008).
  • Šnajdr J, Baldrian P. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor. Folia microbiologica.52(5),498–502 (2007).
  • Membrillo I, Sánchez C, Meneses M, Favela E, Loera O. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour. Technol.99(16),7842–7847 (2008).
  • Garcia T, Santiago M, Ulhoa C. Properties of laccases produced by Pycnoporus sanguineus induced by 2,5-xylidine. Biotechnol. Lett.28(9),633–636 (2006).
  • Oudia A, Joâo Q, Simões R. Potential and limitation of Trametes versicolor laccase on biodegradation of Eucalyptus globulus and Pinus pinaster kraft pulp. Enzyme Microb. Technol.43(2),144–148 (2008).
  • Yaver D, Xu F, Golightly Eet al. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl. Environ. Microbiol.62(3),834–841 (1996).
  • Couto SR, Herrera JLT. Industrial and biotechnological applications of laccases. A review. Biotechnol. Adv.24(5),500–513 (2006).
  • Bendl RF, Kandel JM, Amodeo KD, Ryder AM, Woolridge EM. Characterization of the oxidative inactivation of xylanase by laccase and a redox mediator. Enzyme Microb. Technol.43(2),149–156 (2008).
  • Annunziatini C, Baiocco P, Gerini MF, Lanzalunga O, Sjögren B. Aryl substituted N-hydroxyphthalimides as mediators in the laccase-catalysed oxidation of lignin model compounds and delignification of wood pulp. J. Mol. Catal. B. Enzym.32(3),89–96 (2005).
  • Camarero S, García O, Vidal Tet al. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microbiol. Technol.35(2–3),113–120 (2004).
  • Call HP, Mücke I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym-process). J. Biotechnol.53(2–3),163–202 (1997).
  • Palonen H, Viikari L. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol. Bioeng.86(5),550–557 (2004).
  • Rodrigues MAM, Pinto P, Bezerra RMFet al. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Animal Food Sci. Technol.141(3–4),326–338 (2008).
  • Saha BC, Iten LB, Cotta MA, Wu YV. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem.40(12),3693–3700 (2005).
  • Saha BC, Iten LB, Cotta MA, Wu YV. Dilute Acid Pretreatment, Enzymatic Saccharification, and Fermentation of Rice Hulls to Ethanol. Biotechnol. Progr.21(3),816–822 (2005).
  • Tabka MG, Herpoel-Gimbert I, Monod F, Asther M, Sigoillot JC. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microbiol. Technol.39(4),897–902 (2006).
  • Hakan B, LI K, L. EK-E. Pulp bleaching with manganese peroxidase and xylanase. A synergistic effect. Tappi journal83(10),69 (2000).
  • Pandey A, Selvakumar P, Soccol CR, Nigam P. Solid state fermentation for the production of industrial enzymes. Current Sci.77(1),149–162 (1999).
  • Lee J. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol.56(1),1–24 (1997).
  • Robinson T, Nigam P. Bioreactor design for protein enrichment of agricultural residues by solid state fermentation. Biochem. Eng. J13(2–3),197–203 (2003).
  • Couto SR, Sanroman MA, Hofer D, Gübitz GM. Production of laccase by Trametes hirsuta grown in an immersion bioreactor and its application in the decolorization of dyes from a leather factory. Engineering Life Sci.4(3),233–238 (2004).
  • Hölker U, Lenz J. Solid-state fermentation – are there any biotechnological advantages. Curr. Opin. Microbiol.8(3),301–306 (2005).
  • Lenz J, Höfer M, Krasenbrink JB, Hölker U. A survey of computational and physical methods applied to solid-state fermentation. Appl. Microbiol. Biotechnol.65(1),9–17 (2004).
  • Rahardjo YSP, Tramper J, Rinzema A. Modeling conversion and transport phenomena in solid-state fermentation. A review and perspectives. Biotechnol. Adv.24(2),161–179 (2006).
  • Rajagopalan S, Modak J. Modeling of heat and mass transfer for solid state fermentation process in tray bioreactor. Bioprocess and Biosystems Engineering13(3),161–169 (1995).
  • Sahir AH, Kumar S, Kumar S. Modelling of a packed bed solid-state fermentation bioreactor using the N-tanks in series approach. Biochem. Eng. J35(1),20–28 (2007).
  • Stoeglehner G, Narodoslawsky M. How sustainable are biofuels Answers and further questions arising from an ecological footprint perspective. Bioresour. Technol.100(16),3825–3830 (2009).
  • Taylor G. Biofuels and the biorefinery concept. Energy policy36(12),4406–4409 (2008).
  • Kaparaju P, Serrano M, Thomsen AB, Kongjana P, Angelidak I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol.100(9),2562–2568 (2009).
  • Gomez LD King S, CG. Mason MQ. Sustainable liquid biofuel from biomass. the writing’s on the walls. New Phytologist178(3),473–485 (2008).
  • Lyko H, Deerberg G, Weidner E. Coupled production in biorefineres-combined use of biomass as a source of energy, fuels and materials. J. Biotechnol.142(1),78–86 (2009).
  • Person T, Ren JL, Joelsson E, Jönsson AS. Fractionation of wheat and barley straw to access high-molecular-mass hemicelluloses prior to ethanol production. Bioresour. Technol.100(17),3906–3913 (2009).
  • Huang HJ, Ramaswamy S, Tschirner UW. A review of separation technologies in current and future biorefineries. Sep. Purif. Technol.62(1),1–21 (2008).
  • Mohan D, Pittman UC, Steels PH. Pyrolysis of wood/biomass for bio-oil. a critical review. Energy Fuels20,848–889 (2006).
  • Ragauskas AJ, Williams CK, Davison BH et al.. The path forward for biofuels and biomaterials. Sci.27(311),484–489 (2006).
  • Singh D, Chen S. The white-rot fungus Phanerochaete chrysosporium. conditions for the production of lignin degrading enzymes. Appl. Microbiol. Biotechnol.81,399–417 (2008).
  • Taherzadeh MJ, Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials. A review. Bioresources2(3),472–499 (2007).
  • Behrendt CJ, Blanchette RA. Biological processing of pine logs for pulp and paper production with Phlebiopsis gigantean. Appl. Environ. Microbiol.63,1995–2000 (1996).
  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T. Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioengi.100(6),637–643 (2005).
  • Ballesteros I, Negro MJ, Oliva JM, Cabañas A, Manzanares P, Ballesteros M. Ethanol production from steam explosion pretreated wheat straw. Appl. Biochem. Biotechnol.129–132, 496–508 (2006).
  • Eaton RA. Bacterial decay of ACQ-treated plant in a water cooling tower. Int. Biodet. Biodeg.197–207 (1994).
  • Croan SC. Conversion of wood waste into value-added products by edible and medicinal Pleurotus (Fr.) P. Karst. Species (Agaricales s.l., Basidiomycetes). Inter. J. Med. Mushrooms2,73–80 (2000).

▪ Patent

  • Crawford DL, Muralidhara R. Idaho Research Foundation, Inc.: US 5200338 (Moscow, ID) Bacterial extracellular lignin peroxidase (1993).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.