632
Views
144
CrossRef citations to date
0
Altmetric
Review

Microbial enzyme systems for biomass conversion: emerging paradigms

, , , , &
Pages 323-341 | Published online: 09 Apr 2014

Bibliography

  • Wei H, Xu Q, Taylor LE, Baker JO, Tucker MP, Ding SY. Natural paradigms of plant cell wall degradation. Curr. Opin. Biotechnol.20,330–338 (2009).
  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC. Biomass as feedstock for a bioenergy and bioproduct industry: the technical feasibility of a billion-ton annual supply. In: A joint study sponsored by the US Department of Energy and the US Department of Agriculture. Oak Ridge National Laboratory, TN, USA Oak Ridge (2005).
  • Rose JKC. The Plant Cell Wall (Volume 8). Blackwell Publishing, Garsington, UK (2003).
  • Ding SY, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem.54,597–606 (2006).
  • Sugiyama J, Vuong R, Chanzy H. Electron diffraction study of the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules24,4168–4175 (1991).
  • Atalla RH, VanderHart DL. Native cellulose: a composite of two distinct crystalline forms. Science223,283–285 (1984).
  • Nishiyama Y SJ, Chanzy H, Langan P. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc.124,14300–14306 (2003).
  • Boraston AB. The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven. Biochem. J. (2004).
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate–Active Enzymes database (CAZy): an expert resource for glycogenomics. Nucl. Acids Res.37,D233–238 (2009).
  • Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure3,853–859 (1995).
  • Rouvinen J, Bergfors T, Teeri T, Knowles JKC, Jones TA. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Science279,380–386 (1990).
  • Divne C, Ståhlberg J, Reinikainen T et al. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science265,524–528 (1994).
  • Chanzy H, Henrissat B. Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett.184,285–288 (1985).
  • Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J. Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett.432,113–116. (1998).
  • Teeri TT. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol.15,160–167 (1997).
  • Li Y, Irwin DC, Wilson DB. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl. Environ. Microbiol.73,3165–3172 (2007).
  • Tenkanen M, Poutanen K. Significance of esterases in the degradation of xylans. In: Xylans and Xylanases. Visser J, Beldman G, Kusters-van Someren MA, Voragen AGJ (Eds). Elsevier, UK, 203–212 (1992).
  • Thomas SR, Laymon RA, Chou Y-C et al. Initial approaches to artificial cellulase systems for conversion of biomass to ethanol. In: Bioconversion of Lignocellulosics, ACS Book Series 618. Saddler JN, Penner M (Eds). American Chemical Society, USA (1995).
  • Puls J, Tenkanen M, Korte HE, Poutanen K. Products of hydrolysis of beechwood acetyl-4-O-methylglucuronoxylan by a xylanase and an acetyl xylan esterase. Enzyme Microb. Technol.13,483–486 (1991).
  • Greve LC, Labavitch JM, Hungate RE. α-L-arabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. Microbiol.47,1135–1140 (1984).
  • Johnson KG, Silva MC, MacKenzie CR, Schneider H, Fontana JD. Microbial degradation of hemicellulosic materials. Appl. Biochem. Biotechnol.20/21, 245–258 (1989).
  • Bayer EA, Belaich J-P, Shoham Y, Lamed R. The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol.58,521–554 (2004).
  • Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev.69,124–154 (2005).
  • Doi RH, Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol.2,541–551 (2004).
  • Schwarz WH, Zverlov VV, Bahl H. Extracellular glycosyl hydrolases from Clostridia. Adv. Appl. Microbiol.56,215–261 (2004).
  • Raman B, Pan C, Hurst GB et al. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE4,e5271 (2009).
  • Hammel M, Fierobe H-P, Czjzek M et al. Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J. Biol. Chem.280,38562–38568 (2005).
  • Hammel M, Fierobe HP, Czjzek M, Finet S, Receveur-Brechot V. Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering. J. Biol. Chem.279,55985–55994 (2004).
  • Carvalho AL, Dias FM, Prates JA et al. Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. Proc. Natl Acad. Sci. USA100,13809–13814 (2003).
  • Carvalho AL, Dias FMV, Nagy T et al. Evidence for a dual binding mode of dockerin modules to cohesins. Proc. Natl Acad. Sci. USA104,3089–3094 (2007).
  • Pinheiro BA, Proctor MR, Martinez-Fleites CC et al. The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J. Biol. Chem.283,18422–18430 (2008).
  • Adams JJ, Pal G, Jia Z, Smith SP. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Proc. Natl Acad. Sci. USA103,305–310 (2006).
  • Bayer EA, Lamed R, White BA, Flint HJ. From cellulosomes to cellulosomics. Chem. Rec.8,364–377 (2008).
  • Shoseyov O, Takagi M, Goldstein MA, Doi RH. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc. Natl Acad. Sci. USA89,3483–3487 (1992).
  • Gerngross UT, Romaniec MPM, Kobayashi T, Huskisson NS, Demain AL. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol.8,325–334 (1993).
  • Pagès S, Belaich A, Fierobe H-P, Tardif C, Gaudin C, Belaich J-P. Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J. Bacteriol.181,1801–1810 (1999).
  • Kakiuchi M, Isui A, Suzuki K et al. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol.180,4303–4308 (1998).
  • Ding S-Y, Bayer EA, Steiner D, Shoham Y, Lamed R. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family-9 glycosyl hydrolase. J. Bacteriol.181,6720–6729 (1999).
  • Ding S-Y, Rincon MT, Lamed R et al. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J. Bacteriol.183,1945–1953 (2001).
  • Ding S-Y, Lamed R, Bayer EA, Himmel ME. The bacterial scaffoldin: Structure, function and potential applications in nanoscience. In: Genetic Engineering: Principles and Methods. Setlow JK (Eds). Kluwer Academic Publishers, Germany, 209–226 (2003).
  • Xu Q, Gao W, Ding S-Y et al. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell-surface anchoring protein. J. Bacteriol.185,4548–4557 (2003).
  • Xu Q, Bayer EA, Goldman M, Kenig R, Shoham Y, Lamed R. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell-surface anchoring scaffoldin and a family-48 cellulase. J. Bacteriol.186,968–977 (2004).
  • Rincon MT, Cepeljnik T, Martin JC et al. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface. J. Bacteriol.187,7569–7578 (2005).
  • Morrison M, Daugherty SC, Nelson WC, Davidsen T, Nelson KE. The FibRumBa database: a resource for biologists with interests in gastrointestinal microbial ecology, plant biomass degradation, and anaerobic microbiology. Microb. Ecol. PMID 19609599, (2009).
  • Berg Miller ME, Antonopoulos DA, Rincon MT et al. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. PLoS ONE4,e6650 (2009).
  • Flint HJ, Bayer EA. Plant cell wall breakdown by anaerobic bacteria from the mammalian digestive tract. Ann. NY Acad. Sci.1125,280–288 (2008).
  • Flint HJ, Bayer EA, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Rev. Microbiol.6,121–131 (2008).
  • Bayer EA, Setter E, Lamed R. Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol.163,552–559 (1985).
  • Wang WK, Kruus K, Wu JHD. Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase SS (CelS), a major cellulosome component. J. Bacteriol.175,1293–1302 (1993).
  • Dror TW, Morag E, Rolider A, Bayer EA, Lamed R, Shoham Y. Regulation of the cellulosomal celS (cel48A) gene of Clostridium thermocellum is growth-rate dependent. J. Bacteriol.185,3042–3048 (2003).
  • Berger E, Zhang D, Zverlov VV, Schwarz WH. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol. Lett.268,194–201 (2007).
  • Jindou S, Xu Q, Kenig R, Shoham Y, Bayer EA, Lamed R. Novel architectural theme of family-9 glycoside hydrolases identified in cellulosomal enzymes of Acetivibrio cellulolyticus and Clostridium thermocellum. FEMS Microbiol. Lett.254,308–316 (2006).
  • McGrath CE, Wilson DB. Endocellulolytic activity of the Clostridium thermocellum Cel9C (formerly CbhA) catalytic domain. Indust. Biotechnol.4,99–104 (2008).
  • Arai T, Kosugi A, Chan H et al. Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans. Appl. Microbiol. Biotechnol.71,654–660 (2006).
  • Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y. Regulation of expression of scaffoldin-related genes in Clostridium thermocellum. J. Bacteriol.185,5109–5116 (2003).
  • Dror TW, Rolider A, Bayer EA, Lamed R, Shoham Y. Regulation of major cellulosomal endoglucanases of Clostridium thermocellum differs from that of a prominent cellulosomal xylanase. J. Bacteriol.187,2261–2266 (2005).
  • Zverlov VV, Kellermann J, Schwarz WH. Functional subgenomics of Clostridium thermocellum cellulosomal genes: Identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics5,3646–3653 (2005).
  • Stevenson DM, Weimer PJ. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl. Environ. Microbiol.71,4672–4678 (2005).
  • Gold ND, Martin VJ. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J. Bacteriol.189,6787–6795 (2007).
  • Bayer EA, Morag E, Lamed R. The cellulosome – a treasure-trove for biotechnology. Trends Biotechnol.12,378–386 (1994).
  • Fierobe H-P, Mechaly A, Tardif C et al. Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem.276,21257–21261 (2001).
  • Fierobe H-P, Mingardon F, Mechaly A et al. Action of designer cellulosomes on homogeneous versus complex substrates: Controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J. Biol. Chem.280,16325–16334 (2005).
  • Fierobe H-P, Bayer EA, Tardif C et al. Degradation of cellulose substrates by cellulosome chimeras: substrate targeting versus proximity of enzyme components. J. Biol. Chem.277,49621–49630 (2002).
  • Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe H-P. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl. Environ. Microbiol.73,3822–3832 (2007).
  • Caspi J, Irwin D, Lamed R et al.Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocat. Biotransform.24,3–12 (2006).
  • Caspi J, Irwin D, Lamed R, Fierobe H-P, Wilson DB, Bayer EA. Conversion of noncellulosomal Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J. Biotechnol.135,351–357 (2008).
  • Caspi J, Barak Y, Haimovitz R et al. Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl. Environ. Microbiol.75,7335–7342 (2009).
  • Caspi J, Barak Y, Haimovitz R et al.Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst. Synth. Biol. (In Press) (2010).
  • Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe H-P. Exploration of new geometries in cellulosome-like chimeras. Appl. Environ. Microbiol.73,7138–7149 (2007).
  • Perret S, Casalot L, Fierobe H-P et al. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J. Bacteriol.186,253–257 (2004).
  • Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Biochem. Biotechnol.71,1215–1222 (2005).
  • Perret S, Belaich A, Fierobe HP, Belaich JP, Tardif C. Towards designer cellulosomes in Clostridia: mannanase enrichment of the cellulosomes produced by Clostridium cellulolyticum. J. Bacteriol.186,6544–6552 (2004).
  • Levasseur A, Pages S, Fierobe HP et al. Design and production in Aspergillus niger of a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl. Environ. Microbiol.70,6984–6991 (2004).
  • Tsai SL, Oh J, Singh S, Chen R, Chen W. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol.75,6087–6093 (2009).
  • Lilly M, Fierobe HP, van Zyl WH, Volschenk H. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res.9(8),1236–1249 (2009).
  • Kataeva IA, Yang SJ, Dam P et al. Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium Anaerocellum thermophilum. DSM 6725. J. Bacteriol.191,3760–3761 (2009).
  • Yang SJ, Kataeva I, Hamilton-Brehm SD et al. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725. Appl. Environ. Microbiol.75,4762–4769 (2009).
  • Boraston AB, Nurizzo D, Notenboom V et al. Differential oligosaccharide recognition by evolutionarily-related β-1,4 and β-1,3 glucan-binding modules. J. Mol. Biol.319,1143–1156 (2002).
  • Najmudin S, Guerreiro CI, Carvalho AL et al. Xyloglucan is recognized by carbohydrate-binding modules that interact with β-glucan chains. J. Biol. Chem.281,8815–8828 (2006).
  • Gibbs MD, Reeves RA, Farrington GK, Anderson P, Williams DP, Bergquist PL. Multidomain and multifunctional glycosyl hydrolases from the extreme thermophile Caldicellulosiruptor isolate Tok7B.1. Curr. Microbiol.40,333–340 (2000).
  • Gibbs MD, Saul DJ, Luthi E, Bergquist PL. The β-mannanase from Caldocellumsaccharolyticum is part of a multidomain enzyme. Appl. Environ. Microbiol.58,3864–3867 (1992).
  • Zverlov V, Mahr S, Riedel K, Bronnenmeier K. Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile ‘Anaerocellum thermophilum’ with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology144,457–465 (1998).
  • Hong SY, Lee JS, Cho KM et al. Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol. Lett.28,1857–1862 (2006).
  • Khandeparker R, Numan MT. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biotechnol.35,635–644 (2008).
  • Fan ZM, Wagschal K, Chen W, Montross MD, Lee CC, Yuan L. Multimeric hemicellulases facilitate biomass conversion. Appl. Environ. Microbiol.75,1754–1757 (2009).
  • Fan ZM, Wagschal K, Lee CC et al. The construction and characterization of two xylan-degrading chimeric enzymes. Biotechnol Bioeng102,684–692 (2009).
  • Bayer EA, Kenig R, Lamed R. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol.156,818–827 (1983).
  • Lamed R, Setter E, Bayer EA. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol.156,828–836 (1983).
  • Bayer EA, Lamed R. The cellulosome saga: early history. In: Cellulosome. Uversky V, Kataeva IA (Eds). Nova Science Publishers, Inc, UK, 11–46 (2006).
  • Leibovitz E, Béguin P. A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J. Bacteriol.178,3077–3084 (1996).
  • Lemaire M, Ohayon H, Gounon P, Fujino T, Béguin P. OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J. Bacteriol.177,2451–2459 (1995).
  • Lemaire M, Miras I, Gounon P, Béguin P. Identification of a region responsible for binding to the cell wall within the S-layer protein of Clostridium thermocellum. Microbiology144,211–217 (1998).
  • Zhao G, Li H, Wamalwa B, Sakka M, Kimura T, Sakka K. Different binding specificities of S-layer homology modules from Clostridium thermocellum AncA, Slp1, and Slp2. Biosci. Biotechnol. Biochem.70,1636–1641 (2006).
  • Sleytr UB, Sára M, Pum D, Schuster B. Characterization and use of crystalline bacterial cell surface layers. Prog. Surf. Sci.68,231–278 (2001).
  • Zhao G, Ali E, Sakka M, Kimura T, Sakka K. Binding of S-layer homology modules from Clostridium thermocellum SdbA to peptidoglycans. Appl. Microbiol. Biotechnol.70,464–469 (2006).
  • Jindou S, Levy-Assaraf M, Rincon MT et al. Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol. Lett.285,188–194 (2008).
  • Devillard E, Goodheart DE, Karnati SK et al.Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture. J. Bacteriol.186,136–145 (2004).
  • Xu Q, Morrison M, Bayer EA, Atamna N, Lamed R. A novel family of carbohydrate-binding modules identified with Ruminococcus albus proteins. FEBS Lett.566,11–16 (2004).
  • Ezer A, Matalon E, Jindou S et al. Cell-surface enzyme attachment is mediated by a family-37 carbohydrate-binding module, unique to Ruminococcus albus. J. Bacteriol.190,8220–8222 (2008).
  • Montanier C, van Bueren AL, Dumon C et al. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc. Natl Acad. Sci. USA106,3065–3070 (2009).
  • Halstead JR, Vercoe PE, Gilbert HJ, Davidson K, Hazlewood GP. A family 26 mannanase produced by Clostridium thermocellum as a component of the cellulosome contains a domain which is conserved in mannanases from anaerobic fungi. Microbiology45,3101–3108 (1999).
  • Blum DL, Li XL, Chen H, Ljungdahl LG. Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl. Environ. Microbiol.65,3990–3995 (1999).
  • Liu JH, Selinger BL, Tsai CF, Cheng KJ. Characterization of a Neocallimastixpatriciarum xylanase gene and its product. Can. J. Microbiol.45,970–974 (1999).
  • Steenbakkers PJM, Arts J, dijkerman R et al. The cellulosome-like complex of the anaerobic fungus Piromyces E2. In: Genetics, Biochemistry and Ecology of Cellulose Degradation. Ohmiya K, Hayashi K, Sakka K, Kobayashi Y, Karita S, Kimura T (Eds). Uni Publishers Co., IN, USA, 507–510 (1999).
  • Steenbakkers PJ, Li XL, Ximenes EA et al. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J. Bacteriol.183,5325–5333 (2001).
  • Nagy T, Tunnicliffe RB, Higgins LD, Walters C, Gilbert HJ, Williamson MP. Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J. Mol. Biol.373,612–622 (2007).
  • Shulami S, Zaide G, Zolotnitsky G et al. A two-component system regulates the expression of an ABC transporter for xylo-oligosaccharides in Geobacillus stearothermophilus. Appl. Environ. Microbiol.73,874–884 (2007).
  • Nataf Y, Yaron S, Stahl F et al. Cellodextrin and laminarbiose ABC transporters in Clostridium thermocellum. J. Bacteriol.191,203–209 (2009).
  • Wilson DB. Three microbial strategies for plant cell wall degradation. Ann. NY Acad. Sci.1125,289–297 (2008).
  • Himmel ME, Ding S-Y, Johnson DK et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science315,804–807; Erratum: 316,982 (2007).
  • Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol.16,577–583 (2005).
  • van Zyl WH, Lynd LR, den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol.108,205–235 (2007).
  • Xu Q, Singh A, Himmel ME. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol.20,364–371 (2009).
  • Lynd LR, Laser MS, Bransby D et al. How biotech can transform biofuels. Nature Biotechnol.26,169–172 (2008).
  • Bayer EA, Shoham Y, Lamed R. Cellulosome-enhanced conversion of biomass: On the road to bioethanol. In: Bioengergy. Wall J, Harwood C, Demain AL (Eds). ASM Press, DC, USA, 75–96 (2008).
  • Bayer EA, Henrissat B, Lamed R. The cellulosome: A natural bacterial strategy to combat biomass recalcitrance. In: Biomass Recalcitrance. Himmel ME (Ed.). Blackwell, UK, 407–426. (2008).
  • Von Ossowski I, Stahlberg J, Koivula A et al. Engineering the exo-loop of cellobiohydrolase Cel7A. A comparison with Cel7D. J. Mol. Biol.333,817–829 (2003).
  • Eijsink VG, Vaaje-Kolstad G, Vårum KM, Horn SJ. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol.26,228–235 (2008).
  • Warnecke F, Luginbuhl P, Ivanova N et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature450,560–565 (2007).
  • Brulc JM, Antonopoulos DA, Berg Miller ME et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl Acad. Sci. USA106,1948–1953 (2009).
  • Zhong L, Matthews JF, Hansen PI et al. Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Iβ: the enzyme-substrate complex. Carbohydr. Res.344,984–992 (2009).
  • Bu L, Beckham GT, Crowley MF et al. The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J. Phys. Chem. B113,10994–11002 (2009).
  • Buck M, Bouguet-Bonnet S, Pastor R, MacKerell A Jr. Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys. J.90,L36–L38 (2006).
  • Guvench O, Greene SN, Kamath G et al. Additive empirical force field for hexopyranose monosaccharides. J. Comput. Chem.29,2543–2564 (2008).
  • Côté N, Fleury A, Dumont-Blanchette E, Fukamizo T, Mitsutomi M, Brzezinski R. Two exo-β-D-glucosaminidases/exochitosanases from actinomycetes define a new subfamily within family 2 of glycoside hydrolases. Biochem. J.394,675–686 (2006).
  • Morris DD, Gibbs MD, Ford M, Thomas J, Bergquist PL. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles3,103–111 (1999).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.