363
Views
117
CrossRef citations to date
0
Altmetric
Research Article

Understanding the impact of ionic liquid pretreatment on eucalyptus

, , , , , , , , , , & show all
Pages 33-46 | Published online: 09 Apr 2014

Bibliography

  • Demirbas A. Biofuels sources, biofuel policy, nbiofuel economy and global biofuel projections. Energy Convers. Manag.49(8),2106–2116 (2008).
  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM. Ethanol can contribute to energy and environmental goals. Science311(5760),506–508 (2006).
  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G. Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol.24(12),549–556 (2006).
  • Hu G, Heitmann JA, Rojas OJ. Feedstock pretreatment strategies for producing ethanol from wood, bark, and forest residues. BioResources3(1),270–294 (2008).
  • Wyman CE. Biomass ethanol: technical nprogress, opportunities, and commercial challenges. Ann. Rev. Energy Environ.24,189–226 (1999).
  • Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Biofuels. Springer-Verlag Berlin, Berlin, Germany 41–65 (2007).
  • Sierra R, Smith A, Granda C, Holtzapple MT. Producing fuels and chemicals from lignocellulosic biomass. Chem. Eng. Progr.104(8),S10–S18 (2008).
  • Himmel ME, Ding SY, Johnson DK et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science315(5813),804–807 (2007).
  • Lee SH, Doherty TV, Linhardt RJ, Dordick JS. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng.102(5),1368–1376 (2009).
  • Mosier N, Wyman C, Dale B et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol.96(6),673–686 (2005).
  • Yang B, Wyman CE. Pretreatment: the key to n n unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. Biofpr.2(1),26–40 (2008).
  • Chakar FS, Ragauskas AJ. Review of current and future softwood kraft lignin process chemistry. Ind. Crop. Prod.20(2),131–141 (2004).
  • Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem.11(5),646–655 (2009).
  • Dadi AP, Varanasi S, Schall CA. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng.95(5),904–910 (2006).
  • Kuo CH, Lee CK. Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr. Polym.77(1),41–46 (2009).
  • Li Q, He YC, Xian M et al. Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol.100(14),3570–3575 (2009).
  • Ohno H, Fukaya Y. Task specific ionic liquids for cellulose technology. Chem. Lett.38(1),2–7 (2009).
  • Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin D, Agrawal PK, Jones CW. Ionic-liquid-phase hydrolysis of pine wood. Industr. Eng. Chem. Res.48(3),1277–1286 (2009).
  • Zavrel M, Bross D, Funke M, Buchs J, Spiess AC. High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour. Technol.100(9),2580–2587 (2009).
  • Zhao H, Jones CIL, Baker GA, Xia S, Olubajo O, Person VN. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol.139(1),47–54 (2009).
  • Zhu SD, Wu YX, Chen QM et al. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem.8(4),325–327 (2006).
  • Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD. Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1- N-butyl-3-methylimidazolium chloride. Green Chem.9(1),63–69 (2007).
  • Kilpelainen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS. Dissolution of wood in ionic liquids. J. Agric. Food Chem.55(22),9142–9148 (2007).
  • Singh S, Simmons BA, Vogel KP. Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol. Bioeng.104(1),68–75 (2009).
  • Kim H, Ralph JTA. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6. Bioenerg. Res.1(1),10 (2008).
  • Goddard TD, Kneller DG. SPARKY 3. (University of California, San Francisco, CA, USA).
  • Segal L, Creely JJ, Martin AEJ, Conrad CM. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res. J.29(10),786–794 (1959).
  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose12(6),563–576 (2005).
  • Yoshida M, Liu Y, Uchida S et al. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem.72(3),805–810 (2008).
  • Ikeda T, Holtman K, Kadla JF, Chang HM, Jameel H. Studies on the effect of ball milling on lignin structure using a modified DFRC method. J. Agric. Food Chem.50(1),129–135 (2002).
  • Maurer A, Fengel D. On the origin of milled wood lignin. 1. The influence of ball-milling on the structure of wood cell-walls and the solubility of lignin. Holzforschung46(5),417–423 (1992).
  • Muller G, Bartholme M, Kharazipour A, Polle A. FTIR-ATR spectroscopic analysis of changes in fiber properties during insulating fiberboard manufacture of beech wood. Wood Fiber Sci.40(4),532–543 (2008).
  • Pandey KK, Pitman AJ. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad.52(3),151–160 (2003).
  • Popescu CM, Popescu MC, Singurel G, Vasile C, Argyropoulos DS, Willfor S. Spectral characterization of eucalyptus wood. Appl. Spectrosc.61(11),1168–1177 (2007).
  • Howell C, Hastrup ACS, Goodell B, Jellison J. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi. Int. Biodeterior. Biodegrad.63(4),414–419 (2009).
  • O’Sullivan AC. Cellulose: the structure slowly unravels. Cellulose4(3),173–207 (1997).
  • Broseta D, Barre L, Vizika O, Shahidzadeh N, Guilbaud JP, Lyonnard S. Capillary condensation in a fractal porous medium. Phys. Rev. Lett.86(23),5313–5316 (2001).
  • Crawshaw J, Cameron RE. A small angle X-ray scattering study of pore structure in Tencel (R) cellulose fibres and the effects of physical treatments. Polymer41(12),4691–4698 (2000).
  • Ishii D, Tatsumi D, Matsumoto T. Effect of solvent exchange on the supramolecular structure, the molecular mobility and the dissolution behavior of cellulose in LiCl/DMAc. Carbohydr. Res.343(5),919–928 (2008).
  • Jungnikl K, Paris O, Fratzl P, Burgert I. The implication of chemical extraction treatments on the cell wall nanostructure of softwood. Cellulose15(3),407–418 (2008).
  • Bale HD, Schmidt PW. Small-angle X-ray scattering investigation of submicroscopic porosity with fractal properties. Phys. Rev. Lett.53(6),596–599 (1984).
  • Bjorkman A. Isolation of lignin from finely divided wood with neutral solvents. Nature174(4440),1057–1058 (1954).
  • Rencoret J, Marques G, Gutierrez A, Nieto L, Martinez AT, Del Rio JC. HSQC-NMR analysis of lignin in woody ( Eucalyptus globulus and Picea abies) and non-woody ( Agave sisalana) ball-milled plant materials at the gel state. Holzforschung63(6),691–698 (2009).
  • Lu FC, Ralph J. Detection and determination of p-coumaroylated units in lignins. J. Agric. Food Chem.47(5),1988–1992 (1999).
  • Martinez AT, Rencoret J, Marques G et al. Monolignol acylation and lignin structure in some nonwoody plants: a 2D NMR study. Phytochemistry69(16),2831–2843 (2008).
  • Ralph J. An unusual lignin from kenaf. J. Nat. Prod.59(4),341–342 (1996).
  • Lu FC, Ralph J. Non-degradative dissolution and acetylation of ball-milled plant cell walls: high-resolution solution-state NMR. Plant J.35(4),535–544 (2003).
  • Guerra A, Elissetche JP, Norambuena M et al. Influence of lignin structural features on Eucalyptus globulus kraft pulping. Industr. Eng. Chem. Res.47(22),8542–8549 (2008).
  • Guerra A, Lucia LA, Argyropoulos DS. Isolation and characterization of lignins from Eucalyptus grandis Hill ex Maiden and Eucalyptus globulus L. by enzymatic mild acidolysis (EMAL). Holzforschung62(1),24–30 (2008).
  • Gutierrez A, del Rio JC, Ibarra D et al. Enzymatic removal of free and conjugated sterols forming pitch deposits in environmentally sound bleaching of eucalyptus paper pulp. Environ. Sci. Technol.40(10),3416–3422 (2006).
  • Ibarra D, Chavez MI, Rencoret J et al. Lignin modification during Eucalyptus globulus kraft pulping followed by totally chlorine-free bleaching: a two-dimensional nuclear magnetic resonance, Fourier transform infrared, and pyrolysis-gas chromatography/mass spectrometry study. J. Agric. Food Chem.55(9),3477–3490 (2007).
  • Leschinsky M, Zuckerstatter G, Weber HK, Patt R, Sixta H. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1: comparison of different lignin fractions formed during water prehydrolysis. Holzforschung62(6),645–652 (2008).
  • Rencoret J, Marques G, Gutierrez A et al. Structural characterization of milled wood lignins from different eucalypt species. Holzforschung62(5),514–526 (2008).
  • Bunzel M, Ralph J. NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber. J. Agric. Food Chem.54(21),8352–8361 (2006).
  • Ibarra D, Chavez MI, Rencoret J et al. Structural modification of eucalypt pulp lignin in a totally chlorine-free bleaching sequence including a laccase-mediator stage. Holzforschung61(6),634–646 (2007).
  • Yelle DJ, Ralph J, Frihart CR. Characterization of nonderivatized plant cell walls using high-resolution solution-state NMR spectroscopy. Magn. Reson. Chem.46(6),508–517 (2008).
  • Guerra A, Filpponen I, Lucia LA, Saquing C, Baumberger S, Argyropoulos DS. Toward a better understanding of the lignin isolation process from wood. J. Agric. Food Chem.54(16),5939–5947 (2006).
  • Ona T, Sonoda T, Ito K, Shibata M. Effect of alkali extraction on the lignin monomeric composition in Eucalyptus. J. Wood Sci.46(5),410–413 (2000).
  • Kuo CH, Lee CK. Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine- N-oxide pretreatment. Bioresour. Technol.100(2),866–871 (2009).
  • Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol.84–86,5–37 (2000).
  • Grohmann K, Mitchell DJ, Himmel ME, Dale BE, Schroeder HA. The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl. Biochem. Biotechnol.20–21,45–61 (1989).
  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng.98(1),112–122 (2007).
  • Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol.98(10),2034–2042 (2007).
  • Kim S, Holtzapple MT. Effect of structural features on enzyme digestibility of corn stover. Bioresour. Technol.97(4),583–591 (2006).
  • Kumar R, Wyman CE. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol. Bioeng.103(2),252–267 (2009).
  • Ralph J, Marita JM, Ralph SA et al.Advances in Lignocellulosics Characterization. Argyropoulos DS (Ed.). TAPPI Press, Atlanta, GA, USA, 55–108 (1999).
  • Lu F, Ralph J. Novel tetrahydrofuran structures derived from β–β-coupling reactions involving sinapyl acetate in Kenaf lignins. Org. Biomol. Chem.6,3681–3694 (2008).
  • Ralph J, Lundquist K, Brunow G et al. Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochem. Revs.3,29–60 (2004).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.