1,262
Views
126
CrossRef citations to date
0
Altmetric
Review

Microbial electrolysis: novel technology for hydrogen production from biomass

, , &
Pages 129-142 | Published online: 09 Apr 2014

Bibliography

  • Logan BE. Feature article: biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ. Sci. Technol.38,160A–167A (2004).
  • Hallenbeck PC, Ghosh D. Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol.27,287–297 (2009).
  • Miyake J, Masato M, Yasuo A. Biotechnological hydrogen production: research for efficient light energy conversion. J. Biotechnol.70,89–101 (1999).
  • Liu H, Grot S, Logan BE. Electrochemically assisted production of hydrogen from acetate. Environ. Sci. Technol.39,4317–4320 (2005).
  • Ditzig J, Liu H, Logan BE. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int J. Hydrogen Energy32,2296–2304 (2007).
  • Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy31,1632–1640 (2006).
  • Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis. PNAS104,18871–18873 (2007).
  • Logan BE, Call D, Cheng S et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol.42(23),8630–8640 (2008).
  • Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol.14,512–518 (2006).
  • Lovley DR. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol.4,497–508 (2006)
  • Torres CI, Marcus AK, Rittmann BE. Kinetics of consumption of fermentation products by anode-respiring bacteria. Appl. Microbiol. Biotechnol.77,689–697(2007).
  • Childers SE, Ciufo S, Lovley DR. Geobacter metallireducens access Fe(III) oxide by chemotaxis. Nature416,767–769 (2002).
  • Bond DR, Lovley DR. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol.71,2186–2189 (2005).
  • Pham CA, Jung SJ, Phung NTet al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett.223,129–134 (2003).
  • Wrighton KC, Agbo P, Warnecke F et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J.2,1146–1156 (2008).
  • Rabaey K, Rodriguez J, Blackall LL et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J.1,9–18 (2007).
  • Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol.38,2281–2285 (2004).
  • Reimers CE, Tender LM, Fertig S, Wang W. Harvesting energy from the marine sediment-water interface.Environ. Sci. Technol.35,192–195 (2001).
  • Kim JR, Min B, Logan BE. Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Appl. Microbiol. Biotechnol.68,23–30 (2005).
  • Zuo Y, Xing D, Regan JM, Logan BE. An exoelectrogenic bacterium Ochrobactrum anthropiYZ-1 isolated using a U-tube microbial fuel cell. Appl. Environ. Microbiol.74,3130–3137 (2008).
  • Xing D, Zuo Y, Cheng S, Regan JM, Logan BE. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol.42,4146–4151 (2008).
  • Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol.21,1229–1232 (2003).
  • Kim HJ, Hyun MS, Chang IS, Kim BH. A fuel cell type lactate biosensor using a metal reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol.9,365–367 (1999).
  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Microbiol. Biotechnol.70,5373–5382 (2004).
  • Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol.70,1234–1237 (2004).
  • Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol.70,6023–6030 (2004).
  • Park HS, Kim BH, Kim HS et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell.Anaerobe7,297–306 (2001).
  • Bond DR, Holmes DE, Tender LM, Lovley DR. Electrodereducing microorganisms that harvest energy from marine sediments. Science295,483–485 (2002).
  • Freguia S, Masuda M, Tsujimura S, Kano K. Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry76,14–18 (2009).
  • Myers CR, Myers JM. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefacians MR-1. J. Bacteriol.174,3429–3438 (1992).
  • Rabaey K, Boon N, Hofte M, Verstraete W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol.39,3401–3408 (2005).
  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires.Nature435,1098–1101 (2005).
  • Gorby YA, Yanina S, Malean JS. Electrocally conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS103,11358–11363 (2006).
  • El-Naggar MY, Gorby YA, Xia W, Nealson KH. The molecular density of states in bacterial nanowires. Biophys. J.95,L10–L12 (2008).
  • von Canstein H, Ogawa J, Shimizu S, Lloyd JR. Secretion of flavins by Shewanellaspecies and their role in extracellular electron transfer. Appl. Environ. Microbiol.74,615–623 (2008).
  • Rittmann BE, Krajmalnik-Brown R, Halden RU. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat. Rev. Microbiol.6,604–612 (2008).
  • Call D, Logan BE. Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ. Sci. Technol.42,3401–3406 (2008).
  • Hu H, Fan Y, Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res.42,4172–4178 (2008).
  • Logan BE, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air cathode microbial fuel cells. Environ. Sci. Technol.41,3341–3346 (2007).
  • Rozendal RA, Hamelers HVM, Molenkamp RJ, Buisman CJN. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membrances. Water Res.41,1984–1994 (2007).
  • Tartakovsky B, Manuel MF, Wang H, Guiot SR. High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int. J. Hydrogen Energy34,672–677 (2009).
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol.7,375–381. (2009).
  • Pham NB, Aelterman P, Clauwaert P et al. Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol.77,1119–1129 (2008).
  • Pettersson J, Ramsey B, Harrison D. A review of the latest developments in electrodes for unitized regenerative polymer electrolyte fuel cells.J. Power Sources157,28–34 (2006).
  • Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol.42(21),8101–8107 (2008).
  • Sleutels THJA, Hamelers HVM, Rozendal RA, Buisman CJN. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. Intl J. Hydrogen Energy34,3612–3620 (2009).
  • Crittenden SR, Sund CJ, Sumner JJ. Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer. Langmuir22,9473–9476 (2006).
  • Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng.81(3),348–355. (2003).
  • Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR. Harvesting energy from the marine sediment-water interface II – kinetic activity of anode materials. Biosens. Bioelectron.21,2058–2063 (2006).
  • Cheng S, Logan BE. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Elec. Comm.9,492–496 (2007).
  • Navarro-Flores E, Chong Z, Omanovic S. Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. J. Mol. Catalyst A: Chemical.226,179–197 (2005).
  • Martinez S, Hukovic MM, Valek L. Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: synergistic electronic effect. J. Molecular Catalyst A: Chemical.245,114–121 (2006).
  • Olivares-Ramirez JM, Campos-Cornelio ML, Uribe Godinez J, Borja-Arco E. Castellanos RH. Studies on the hydrogen evolution reaction on different stainless steels. Int. J. Hydrogen Energy32,3170–3173 (2007).
  • Call D, Merrill M, Logan BE. High surface area stainless steel brushes as cathodes in microbial electrolysis cells (MECs). Environ. Sci. Technol.43,2179–2183 (2009).
  • Selembo PA, Merrill MD, Logan BE. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources190,271–278 (2009).
  • Hu H, Fan Y, Liu H. Hydrogen production in single chamber tubular microbial electrolysis cells using non-precious metal catalysts (NiMo, NiW). Int. J. Hydrogen Energy34,8535–8542 (2009).
  • Jeremiasse AW, Hamelers HVM, Buisman CJN. Microbial electrolysis cell with a microbial biocathodes. Bioelectrochem. DOI:10.1016/j.bioelechem.2009.05.005 (2009) (Epub ahead of print).
  • Rozendal RA, Jeremiasse AW, Hamelers HVM et al. Hydrogen production with a microbial biocathode. Environ. Sci. Technol.42,629–634 (2008).
  • Harnisch F, Sievers G, Schroder U. Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions. Appl Catal B Environ.89,455–458 (2009).
  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN. Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology26,450–459 (2008).
  • Rozendal RA, Jeremiasse AW, Hamelers HVM et al. Effect of the type of ion exchange membrane on performance ion transport and pH in biocatalyzed electrolysis of wastewater. Water Sci. Technol.57,1757–1762 (2008).
  • Rozendal RA, Hamelers HVM, Buisman CJN. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol.40,5206–5211 (2006).
  • Kim JR, Cheng S, Oh S-E, Logan BE. Power generation using different cation anion and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol.41,1004–1009 (2007).
  • Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol.41,8154–8158 (2007).
  • Chae KJ, Choi MJ, Lee J, Arayi FF, Kim IS. Biohydrogen production via biocatalyzed electrolysis in acetate-fed bioelectrochemical cells and microbial community analysis. Int. J Hydrogen Energy,33,5184–5192 (2008).
  • Sun M, Sheng GP, Zhang L et al. An MEC-MFC-coupled system for Biohydrogen production from acetate. Environ. Sci. Technol.42,8095–8400 (2009).
  • Lee HS, Torres CI, Parameswaran P, Rittmann BE. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environ. Sci. Technol.43,7971–7976 (2009).
  • Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res.42,1501–1510 (2008).
  • Freguia S, Rabaey K, Yuan Z, Keller J. Electron and carbon balances in microbial fuel cells reveal temporary bacterial storage behaviour during electricity generation. Environ. Sci. Technol.41(8),2915–2921 (2007).
  • Cheng S, Xing D, Call D, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol.43(10),3953–3958 (2009).
  • Wang A, Liu W, Cheng S, Xing D, Zhou J, Logan BE. Source of methane and methods to control its formation in single chamber microbial electrolysis cells. Intl J. Hydrogen Energy34,3653–3658 (2009).
  • Marshall CW, May HD. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica. Energy Environ. Sci.2,699–705 (2009).
  • Shizas I, Bagley DM. Experimental determination of energy content of unknown organics in municipal wastewater streams. J. Energy Engineering130,45–53 (2004).
  • Selembo PA, Perez JM, Lloyd WA, Logan BE. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrogen Energy34,5373–5381 (2009).
  • Lu L, Ren N, Xing D, Logan BE. Hydrogen production with effluent from an ethanol-H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens. Bioelectron24,3055–3060 (2009).
  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TM, Logan BE. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Microbiol. Biotechnol.75,3673–3678 (2009).
  • Ren Z, Ward TW, Regan JM. Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol.41,4781–4786 (2007).
  • Catal T, Li K, Bermek H, Liu H. Electricity production from twelve monosaccharides using microbial fuel cells.J. Power Sources,175,196–200 (2008).
  • Catal T, Xu S, Li K, Bermek H, Liu H. Electricity generation from polyalcohols in single-chamber microbial fuel cells. Biosens. Bioelectron.24,855–860 (2008).
  • Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce.Appl. Biochem. Biotechnol. A Enzyme Engineering Biotechnol.77–79, 91–103 (1999).
  • Larsson S, Cassland P, Jonsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulosic hydrolysates by heterologous expression of laccase. Appl. Environ. Microbiol.67,1163–1170 (2001).
  • Borole AP, Mielenz JR, Vishnivetskaya TA, Hamilton CY. Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol. Biofuels2–7 (2009).
  • Catal T, Fan Y, Li K, Bermek H, Liu H. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. J. Power Sources180,162–166. (2008).
  • Zuo Y, Maness PC, Logan BE. Electricity production from steam exploded corn stover biomass. Energy Fuels20,1716–1721 (2006).
  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness P-C, Logan BE. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int. J. Hydrogen Energy34,6201–6210 (2009).
  • Malki M, De Lacey AL, Rodriguez N, Amils R, Fernandez VM. Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen. Appl. Microbiol. Biotechnol.74,4472–4476 (2008).
  • Ringeisen BR, Ray R, Little B. A miniature microbial fuel cell operating with an aerobic anode chamber. J. Power Sources165,591–597 (2007).
  • Bretschger O, Obraztsova A, Sturm CA et al. Current production and metal oxide reduction by Shewanella oneidensis MR - 1 wildtype and mutants. Appl. Environ. Microbiol.73,7003–7012 (2007).
  • Zhang T, Cui C, Chen S et al. A novel mediatorless microbial fuel cell based on biocatalysis of Escherichia coli. Chem. Commun.2006,2257–2259 (2006).
  • Zhang L, Zhou S, Zhuang L et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm. Electrochem. Commun.10,1641–1643 (2008).
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol.69,1548–1555 (2003).
  • Dumas C, Basseguy R, Bergel A. DSA to grow electrochemically active biofilms of Geobacter sufurreducens. Electrochimica Acta53,3200–3209 (2008).
  • Milliken CE, May HD. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl. Microbiol. Biotechnol,73,1180–1189 (2007).
  • Wagner RC, Regan JM, Oh SE, Zuo Y, Logan BE. Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res.43,1480–1488 (2009).

▪ Patent

  • Rozendal RA, Buisman CJN. Bio-electrochemical process for producing hydrogen. WO 2005005981 (2005).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.