3,258
Views
45
CrossRef citations to date
0
Altmetric
Review

Trichoderma reesei: genetic approaches to improving strain efficiency

&
Pages 343-354 | Published online: 09 Apr 2014

Bibliography

  • Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol.108,95–120 (2007).
  • Himmel ME, Ding SY, Johnson DK et al. Biomass recalcitrance. engineering plants and enzymes for biofuels production. Science315(5813),804–807 (2007).
  • Reese ET. History of the cellulase program at the US army Natick Development Center. Biotechnol. Bioeng. Symp.6,9–20 (1976).
  • Durand H, Clanet M, Tiraby G. Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microbiol. Technol.10,341–346 (1988).
  • Eveleigh DE, Montenecourt BS. Increasing yields of extracellular enzymes. Adv. Appl. Microbiol.25,57–74 (1979).
  • Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol.14(4),438–443 (2003).
  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science315(5813),801–804 (2007).
  • Aro N, Pakula T, Penttila M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev.29(4),719–739 (2005).
  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels2,19 (2009).
  • Stricker AR, Mach RL, De Graaff LH. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina ( Trichoderma reesei). Appl. Microbiol. Biotechnol.78(2),211–220 (2008).
  • Seiboth B, Pakdaman B, Hartl L, Kubicek CP. Lactose metabolism in filamentous fungi: how to deal with an unknown substrate. Fungal Biol. Rev.21,42–48 (2007).
  • Schmoll M. The information highways of a biotechnological workhorse – signal transduction in Hypocrea jecorina. BMC Genomics9,430 (2008).
  • Arvas M, Pakula T, Lanthaler K et al. Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics7,32 (2006).
  • Chambergo FS, Bonaccorsi ED, Ferreira AJ et al. Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J. Biol. Chem.277(16),13983–13988. (2002).
  • Foreman PK, Brown D, Dankmeyer L et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J. Biol. Chem.278(34),31988–31997 (2003).
  • Schmoll M, Zeilinger S, Mach RL, Kubicek CP. Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet. Biol.41(9),877–887 (2004).
  • Martinez D, Berka RM, Henrissat B et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol.26(5),553–560 (2008).
  • Machida M, Asai K, Sano M et al. Genome sequencing and analysis of Aspergillus oryzae. Nature438(7071),1157–1161 (2005).
  • Ilmen M, Thrane C, Penttilä M. The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol. Gen. Genet.251(4),451–460 (1996).
  • Seidl V, Gamauf C, Druzhinina IS, Seiboth B, Hartl L, Kubicek CP. The Hypocrea jecorina ( Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics9,327 (2008).
  • Nakari-Setälä T, Paloheimo M, Kallio J, Vehmaanpera J, Penttilä M, Saloheimo M. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl. Environ. Microbiol.75(14),4853–4860 (2009).
  • Geysens S, Pakula T, Uusitalo J, Dewerte I, Penttila M, Contreras R. Cloning and characterization of the glucosidase II α subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl. Environ. Microbiol.71(6),2910–2924 (2005).
  • Le Crom S, Schackwitz W, Pennacchio L et al. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA106(38),16151–16156 (2009).
  • Herpoel-Gimbert I, Margeot A, Dolla A et al. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels1(1),18 (2008).
  • Zhang PY-H, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv.24,452–481 (2006).
  • Sternberg D, Vijayakumar P, Reese ET. β-glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Canad. J. Microbiol.23,139–147 (1977).
  • Meyer AS, Rosgaard L, Sorensen HR. The minimal enzyme cocktail concept for biomass processing. J. Cereal Sci.50(3),337–344 (2009).
  • Eijsink VG, Vaaje-Kolstad G, Varum KM, Horn SJ. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol.26(5),228–235 (2008).
  • Saloheimo M, Paloheimo M, Hakola S et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem.269(17),4202–4211 (2002).
  • Verbeke J, Coutinho P, Mathis H et al. Transcriptional profiling of cellulase and expansin-related genes in a hypercellulolytic Trichoderma reesei. Biotechnol. Lett.31(9),1399–1405 (2009).
  • Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J. Mol. Biol.383(1),144–154 (2008).
  • Vaaje-Kolstad G, Houston DR, Riemen AH, Eijsink VG, van Aalten DM. Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol. Chem.280(12),11313–11319 (2005).
  • Donohoe BS, Selig MJ, Viamajala S, Vinzant TB, Adney WS, Himmel ME. Detecting cellulase penetration into corn stover cell walls by immuno-electron microscopy. Biotechnol. Bioeng.103(3),480–489 (2009).
  • Sreenath HK. Studies on starch granules digestion by α-amylase. Starch44(2),61–63 (1992).
  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng.101(5),913–925 (2008).
  • Martinez D, Challacombe J, Morgenstern I et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci. USA106(6),1954–1959 (2009).
  • Levasseur A, Piumi F, Coutinho PM et al. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet. Biol.45(5),638–645 (2008).
  • Hartl L, Seiboth B. Sequential gene deletions in Hypocrea jecorina using a single blaster cassette. Curr. Genet.48(3),204–211 (2005).
  • Thomson JG, Ow DW. Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis44(10),465–476 (2006).
  • Sauer B. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol.7(6),2087–2096 (1987).
  • Krappmann S. Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol. Rev.21,25–29 (2007).
  • Guangtao Z, Hartl L, Schuster A et al. Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J. Biotechnol.139(2),146–151 (2009).
  • Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature412(6847),607–614 (2001).
  • Critchlow SE, Jackson SP. DNA end-joining: from yeast to man. Trends Biochem. Sci.23(10),394–398 (1998).
  • Ninomiya Y, Suzuki K, Ishii C, Inoue H. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl Acad. Sci. USA101(33),12248–12253 (2004).
  • Colot HV, Park G, Turner GE et al. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl Acad. Sci. USA103(27),10352–10357 (2006).
  • Nielsen JB, Nielsen ML, Mortensen UH. Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet. Biol.45(3),165–170 (2008).
  • Druzhinina IS, Kopchinskiy AG, Kubicek CP. The first 100 Trichoderma species characterized by molecular data. Mycoscience47,55–64 (2006).
  • Kuhls K, Lieckfeldt E, Samuels GJ et al. Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina. Proc. Natl Acad. Sci. USA93(15),7755–7760 (1996).
  • Seidl V, Seibel C, Kubicek CP, Schmoll M. Sexual development in the industrial workhorse Trichoderma reesei. Proc. Natl Acad. Sci. USA106(33),13909–13914 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.