364
Views
31
CrossRef citations to date
0
Altmetric
Review

Metabolic engineering of Escherichia coli for biofuel production

&
Pages 493-504 | Published online: 09 Apr 2014

Bibliography

  • Rude MA, Schirmer A. New microbial fuels: a biotech perspective. Curr. Opin. Microbiol.12,274–281 (2009).
  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science315,801–804 (2007).
  • Stephanopoulos G, Gill RT. After a decade of progress, an expanded role for metabolic engineering. Adv. Biochem. Eng. Biotechnol.73,1–8 (2001).
  • Chemler JA, Koffas MA. Metabolic engineering for plant natural product biosynthesis in microbes. Curr. Opin. Biotechnol.19,597–605 (2008).
  • Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol.63,258–266 (2003).
  • Himmel ME, Ding SY, Johnson DK et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science315,804–807 (2007).
  • Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO. Development of ethanologenic bacteria. Adv. Biochem. Eng. Biotechnol.108,237–261 (2007).
  • Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol.108,147–177 (2007).
  • Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr. Opin. Biotechnol.20,300–306 (2009).
  • Ingram LO, Aldrich HC, Borges AC et al. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog.15,855–866 (1999).
  • Tao H, Gonzalez R, Martinez A et al. Engineering a homoethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J. Bacteriol.183,2979–2988 (2001).
  • Kim Y, Ingram LO, Shanmugam KT. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl. Environ. Microbiol.73,1766–1771 (2007).
  • Underwood SA, Buszko ML, Shanmugam KT, Ingram LO. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl. Environ. Microbiol.68,1071–1081 (2002).
  • Underwood SA, Zhou S, Causey TB, Yomano LP, Shanmugam KT, Ingram LO. Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli. Appl. Environ. Microbiol.68,6263–6272 (2002).
  • Nichols NN, Dien BS, Bothast RJ. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl. Microbiol. Biotechnol.56,120–125 (2001).
  • Gonzalez R, Tao H, Shanmugam KT, York SW, Ingram LO. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol. Prog.18,6–20 (2002).
  • Trinh CT, Unrean P, Srienc F. A minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol.74,3634–3643 (2008).
  • Trinh CT, Srienc F. Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl. Environ. Microbiol.75,6696–6705 (2009).
  • Yomano LP, York SW, Ingram LO. Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol.20,132–138 (1998).
  • Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO. Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol. Prog.19,612–623 (2003).
  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science314,1565–1568 (2006).
  • Alper H, Stephanopoulos G. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng.9,258–267 (2007).
  • Zhou B, Martin GJ, Pamment NB. Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol. Bioeng.100,627–633 (2008).
  • Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO. Silencing of NADPH-dependent oxidoreductases (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl. Environ. Microbiol.75,4315–4323 (2009).
  • Atsumi S, Liao JC. Metabolic engineering for advanced biofuels production from Escherichia coli. Curr. Opin. Biotechnol.19,414–419 (2008).
  • Papoutsakis ET. Engineering solventogenic clostridia. Curr. Opin. Biotechnol.19,420–429 (2008).
  • Steen EJ, Chan R, Prasad N et al. Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb. Cell Fact.7,36 (2008).
  • Atsumi S, Cann AF, Connor MR et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng.10,305–311 (2008).
  • Inui M, Suda M, Kimura S et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl. Microbiol. Biotechnol.77,1305–1316 (2008).
  • Cornillot E, Croux C, Soucaille P. Physical and genetic map of the Clostridium acetobutylicum ATCC 824 chromosome. J. Bacteriol.179,7426–7434 (1997).
  • Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KJ. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng.11,262–273 (2009).
  • Hanai T, Atsumi S, Liao JC. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol.73,7814–7818 (2007).
  • Jojima T, Inui M, Yukawa H. Production of isopropanol by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol.77,1219–1924 (2008).
  • Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature451,86–89 (2008).
  • Zhang K, Sawaya MR, Eisenberg DS, Liao JC. Expanding metabolism for biosynthesis of non-natural alcohols. Proc. Natl Acad. Sci. USA105,20653–20658 (2008).
  • Yan Y, Liao JC. Engineering metabolic systems for production of advanced fuels. J. Ind. Microbiol. Biotechnol.36,471–479 (2009).
  • Shen CR, Liao JC. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng.10,312–320 (2008).
  • Atsumi S, Liao JC. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl. Environ. Microbiol.74,7802–7808 (2008).
  • Cann AF, Liao JC. Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol.81,89–98 (2008).
  • Connor MR, Liao JC. Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl. Environ. Microbiol.74,5769–5775 (2008).
  • Kalscheuer R, Stölting T, Steinbüchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiol.152,2529–2536 (2006).
  • Adamczak M, Bornscheuer U, Bednarski W. The application of biotechnological methods for the synthesis of biodiesel. Euro. J. Lipid Sci. and Technol.111,800–813 (2009).
  • Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol.80,749–756 (2008).
  • Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A. Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl. Environ. Microbiol.72,1373–1379 (2006).
  • Davis MS, Solbiati J, Cronan JE Jr. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J. Biol. Chem.275,28593–28598 (2000).
  • Leonard E, Lim KH, Saw PN, Koffas MA. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microbiol.73,3877–3886 (2007).
  • Lu X, Vora H, Khosla C. Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab. Eng.10,333–339 (2008).
  • Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D. Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J. Biotechnol.139,169–175 (2009).
  • Anthony JR, Anthony LC, Nowroozi F, Kwon G, Newman JD, Keasling JD. Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng.11,13–19 (2009).
  • Yoon SH, Lee SH, Das A et al. Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J. Biotechnol.140,218–226 (2009).
  • Yoon SH, Lee YM, Kim JE et al. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng.94,1025–1032 (2006).
  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol.21,796–802 (2003).
  • Withers ST, Gottlieb SS, Lieu B, Newman JD, Keasling JD. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol.73,6277–6283 (2007).
  • Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng.9,193–207 (2007).
  • Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD. Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol.19,228–234 (2008).
  • Koffas MA. Expanding the repertoire of biofuel alternatives through metabolic pathway evolution. Proc. Natl Acad. Sci. USA106,965–966 (2009).
  • Fowler ZL, Gikandi WW, Koffas MA. Increasing malonyl-CoA biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Appl. Environ. Microbiol. doi: 10.1128/AEM.00270-00209 (2010) (Epub ahead of print).
  • Fortman JL, Chhabra S, Mukhopadhyay A et al. Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol.26,375–381 (2008).
  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol.19,556–563 (2008).
  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc. Natl Acad. Sci. USA102,12678–12683 (2005).
  • Pfleger BF, Pitera DJ, Smolke CD, Keasling JD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol.24,1027–1032 (2006).
  • Hallam SJ, Mincer TJ, Schleper C et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol.4,e95 (2006).
  • Berg IA, Kockelkorn D, Buckel W, Fuchs G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science318,1782–1786 (2007).
  • Kockelkorn D, Fuchs G. Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl-Coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle in sulfolobales. J. Bacteriol.191,6352–6362 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.