274
Views
52
CrossRef citations to date
0
Altmetric
Review

Aquatic plants: an opportunity feedstock in the age of bioenergy

&
Pages 311-321 | Published online: 09 Apr 2014

Bibliography

  • Goldemberg J. The promise of clean energy. Energ. Policy34,2185–2190 (2006).
  • Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ. Convers. Manage.49,2106–2116 (2008).
  • Donner SD, Kucharik CJ. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc.Natl Acad.Sci. USA105,4513–4518 (2008).
  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science319,1235–1238 (2008).
  • Evans JM, Cohen MJ. Regional water resource implications of bioethanol production in the southeastern United States. Glob. Change Biol.15,2261–2273 (2009).
  • Boddiger D. Boosting biofuel crops could threaten food security. Lancet370,923–924 (2008).
  • Tilman D, Hill J, Leman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science314,1598–1600 (2006).
  • Gunderson CA, Davis EB, Hager HI et al.Exploring Potential U.S. Switchgrass Production for Lignocellulosic Ethanol. Oak Ridge National Laboratory, TN, USA (2008).
  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK. Net energy of cellulosic ethanol from switchgrass. Proc.Natl Acad.Sci. USA105,464–469 (2008).
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg.26,361–375 (2004).
  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply. Oak Ridge National Laboratory, TN, USA (2005).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25,294–306 (2007).
  • Gressel J. Transgenics are imperative for biofuel crops. Plant Sci.174,246–263 (2008).
  • Russelle MP, Morey RV, Baker JM, Porter PM, Jung HJG. Comment on “Carbon-negative biofuels from low-input high-diversity grassland biomass.” Science316,1567b (2007).
  • Dicks MR, Campiche J, Ugarte DDLT, Hellwinckel C, Bryant HL, Richardson JW. Land use implications of expanding biofuel demand. J. Agr. Appl. Econ.41,435–453 (2009).
  • Bies L. The biofuels explosion: is green energy good for wildlife? Wildlife Soc. B.34,1203–1205 (2006).
  • Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J.99,1665–1667 (2007).
  • Lal R. Soil quality impacts of residue removal for bioethanol production. Soil Till. Res.102,233–241 (2009).
  • Vasudevan PT, Briggs M. Biodiesel production – current state of the art and challenges. J. Ind. Microb. Biot.35,421–430 (2008).
  • National Invasive Species Council. Invasive Species Definition Clarification and Guidance White Paper. United States Department of the Interior, Washington, DC, USA (2006).
  • Lach L. Losses from aquatic weeds. In: Encyclopedia of Pest Management. Pimentel D (Ed.). Marcel Dekker, NY, USA, 466–469 (2002).
  • Newman S, Schuette J, Grace JB et al. Factors influencing cattail abundance in the northern Everglades. Aquat. Bot.60,265–280 (1998).
  • Leng RA, Preston TR, Rodriguez L. The Duckweed Invasion of Lake Maracaibo: An Evaluation of the Causes and Proposals for Future Action. The University of Tropical Agriculture Foundation, Caracas, Venezuela (2004).
  • Schmitz DC, Simberloff D, Hofstetter RH, Haller W, Sutton D. The ecological impact of nonindigenous plants. In: Strangers in Paradise: Impact and Management of Nonindigenous Species in Florida. Simberloff D, Schmitz DC, Brown TC (Eds). Island Press, Washington, DC, USA 39–61 (1997).
  • Banik A, Sen M, Sen SP. Methane emissions from waterhyacinth-infested freshwater ecosystems. Chemosphere27,1539–1552 (1993).
  • Plummer ML. Impact of invasive water hyacinth (Eichhornia crassipes) on snail host of schistosomiasis in Lake Victoria, East Africa. EcoHealth2,81–86 (2005).
  • Wilde SB, Murphy TM, Hope CP et al. Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacterial species. Environ. Toxicol.20,348–353 (2005).
  • Lovell SJ, Stone SF. The Economic Impacts of Aquatic Invasive Species: A Review of the Literature. United States Environmental Protection Agency, Washington, DC, USA (2005).
  • Yan X, Zhenyu L, Gregg WP, Dianmo L. Invasive species in China – an overview. Biodivers. Conserv.10,1317–1341 (2001).
  • Padilla DK, Williams SL. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front. Ecol. Environ.2,131–138 (2004).
  • Buker GE. Engineers vs. Florida’s green menace. Fla. Hist. Q.60,413–427 (1982).
  • Van TK, Wheeler GS, Center TD. Competitive interactions between hydrilla (Hydrilla verticilla ) and vallisneria (Vallisneria americana) as influenced by insect herbivory. Biol. Control11,185–192 (1998).
  • Center TD, Van TK, Dray FA et al. Herbivory alters competitive interactions between two invasive aquatic plants. Biol. Control33,173–185 (2005).
  • Wilson JR, Holst N, Rees M. Determinants and patterns of growth in water hyacinth. Aquat. Bot.81,51–67 (2005).
  • Zhao Y, Lu J, Zhu L, Fu Z. Effects of nutrient levels on growth characteristics and competitive ability of water hyacinth (Eichhornia crassipes), an aquatic invasive plant. Biodiv. Sci.14,159–164 (2006).
  • Henry-Silva GG, Camargo FM, Pezzato MM. Growth of free-floating aquatic macrophytes in different concentrations of nutrients. Hydrobiologia610,153–160 (2008).
  • Smith CS, Barko JW. Ecology of Eurasian watermilfoil. J. Aquat. Plant Manage.28,55–64 (1990).
  • Van TK, Wheeler GS, Center TD. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility. Aquat. Bot.62,225–233 (1999).
  • Madsen JD. Predicting invasion success of Eurasian watermilfoil. J. Aquat. Plant Manage.36,28–32 (1998).
  • Gu B. Environmental conditions and phophorus removal in Florida lakes and wetlands inhabited by Hydrilla verticillata (Royle): implications for invasive species management. Biol. Invasions8,1569–1578 (2006).
  • Jones S. Aquatic Plants in Dane County Waters. Dane County Lakes and Watershed Commission, WI, USA (2003).
  • Mallya GA, Mjema P, Ndunguru J. Water hyacinth control through integrated pest management strategies in Tanzania. In: Proceedings of the Second Meeting of Global Working Group for the Biological and Integrated Control of Water Hyacinth. Julien MH, Hill MP, Jianqing D (Eds). Beijing, China, 120–122 (2001).
  • Madsen JD. Advantage and disadvantages of aquatic plant management techniques. LakeLine20,22–34 (2000).
  • Greenfield BK, David N, Hunt J, Wittman M, Siemering G. Aquatic Pesticide Monitoring Program: Review of Alternative Aquatic Pest Control Methods for California Waters. San Francisco Estuary Institute, CA, USA (2004).
  • Gunnarson CC, Petersen CM. Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manage.27,117–129 (2007).
  • Carpenter SA, Adams MS. Macrophyte control by harvesting and herbicides: Implications for phosphorus cycling in Lake Wingra, Wisconsin. J. Aquat. Plant Manage.16,20–23 (1978).
  • Mahujchariyawong J, Ikeda S. Modelling of environmental phytoremedation in eutrophic river – the case of water hyacinth harvest in Tha-chin river, Thailand. Ecol. Model.142,121–134 (2001).
  • Reisinger DL, Brabham M, Schmidt MF, Victor PR, Schwartz L. Methodology, evaluation, and feasibility study of total phosphorus removal management measures in Lake George and nearby lakes. Fla. Water Resources J.60(9),42–50 (2008).
  • Hronich JE, Martin L, Plawsky J, Bungay HR. Potential of Eichhornia crassipes for biomass refining. J. Ind. Microbiol. Biot.35,393–402 (2008).
  • Perrin R, Vogel K, Schmer M, Mitchell R. Farm-scale production cost of switchgrass for biomass. BioEnergy Research1,91–97 (2008).
  • Robinson AT, Fulmer JE, Avenetti LD. Aquatic Plant Surveys and Evaluation of Aquatic Plant Harvesting in Arizona Reservoirs. Arizona Game and Fish Department, Phoenix, AZ, USA (2007).
  • Greenfield BK, Blankinship M, McNabb TJ. Control costs, operation, and permitting issues for non-chemical plant control: case studies in the San Francisco Bay-Delta region, California. J. Aquat. Plant Manage.44,40–49 (2006).
  • Mangas-Ramirez E, Elias-Gutierrez M. Effect of mechanical removal of water hyacinth (Eichhornia crassipes) on the water quality and biological communities in a Mexican reservoir. Aquat. Ecosyst. Health Manage.7,161–168 (2004).
  • Greenfield BK, Siemering GS, Andrews JC, Rajan M, Andrews SP, Spencer DF. Mechanical shredding of water hyacinth (Eichhornia crassipes): effects on water quality in the Sacramento–San Joaquin River Delta, California. Estuaries Coasts30,627–640 (2007).
  • Netherland MD. The use of herbicides for managing aquatic vegetation in southern reservoirs. Am. Fish. Soc. Symp.62,493–507 (2008).
  • Netherland MD, Getsinger KD, Skogerboe JD. Mesocosm evaluation of the species-selective potential of fluridone. J. Aquat. Plant Manage.35,41–50 (1997).
  • Sprecher SL, Getsinger KD, Stewart AB. Selective effects of aquatic herbicides on sago pondweed. J. Aquat. Plant Manage.36,64–68 (1998).
  • Skogerboe JG, Getsinger KD. Endothall species selectivity evaluation: northern latitude aquatic plant community. J. Aquat. Plant Manage.40,1–5 (2002).
  • Reddy KR, Sacco PD. Decomposition of water hyacinth in agicultural drainage water. J. Environ. Qual.10,228–234 (1981).
  • Grimshaw HJ. Nutrient-release and detritus production by herbicide-treated freely floating aquatic vegetation in a large, shallow subtropical lake and river. Arch. Hydrobiol.153,469–490 (2002).
  • Brenner M, Keenan LW, Miller SJ, Schelske CL. Spatial and temporal patterns of sediment and nutrient accumulation in shallow lakes of the Upper St. Johns River Basin, Florida. Wetlands Ecol. Manage.6,221–240 (1999).
  • Paul EA, Simonin HA, Symula J, Bauer RW. The toxicity of diquat, endothall, and fluridone to the early life stages of fish. J. Freshwater Ecol.9,229–239 (1994).
  • Wagner KI, Hauxwell J, Rasmussen PW et al. Whole-lake herbicide treatments for Eurasian watermilfoil in four Wisconsin lakes: Effects on vegetation and water clarity. Lake Reservoir Manage.23,83–94 (2007).
  • Michel A, Arias RS, Scheffler BE, Duke SO, Netherland MD, Dayan FE. Somatic mutation-mediated evolution of herbicide resistance in the nonindigenous invasive plant hydrilla (Hydrilla verticillata). Mol. Ecol.13,3229–3237 (2004).
  • Room PM, Harley KLS, Forno IW, Sands DPA. Successful biological control of the floating weed salvinia. Nature294,78–80 (1981).
  • McFadyen REC. Biological control of weeds. Annu. Rev. Entom.43,369–393 (1998).
  • Simberloff D, Stiling P. Risks of species introduced for biological control. Biol. Conserv.78,185–192 (1996).
  • Pemberton RW. Predictable risk to native plants in weed biological control. Oecologia125,489–494 (2000).
  • Cofrancesco AF. Overview and future direction of biological control technology. J. Aquat. Plant Manage.36,49–53 (1998).
  • Dray FA, Center TD, Wheeler GS. Lessons from unsuccessful attempts to establish Spodoptera pectinicornis (Lepdoptera: Noctuidae), a biological control agent of waterlettuce. Biocontrol Sci. Techn.11,301–316 (2001).
  • Gajalakshmi A, Abbasi T, Abbasi SA. Energy from anaerobic digestion of phytomass: an enduring but unrealized dream. Indian Chem. Eng.48,109–111 (2006).
  • Nigam JN. Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J. Biotechnol.97,107–116 (2002).
  • Bransby DI, McLaughlin SB, Parrish DJ. A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass Bioenerg.14,379–384 (1998).
  • Hayes TD, Isaacson HR, Reddy KR, Chynoweth DP, Biljetina R. Water hyacinth systems for water treatment. In: Aquatic Plants for Water Treatment and Resource Recovery. Reddy KR, Smith WH (Eds). Magnolia Publishing, Orlando, FL, USA, 121–139 (1987).
  • Hu W, Salomonsen J, Xu FL, Pu P. A model for the effects of water hyacinths on water quality in an experiment of physico–biological engineering in Lake Taihu, China. Ecol. Model.107,171–188 (1998).
  • Isarankura-Na-Ayudhya C, Tantimongcolwat T, Kongpanpee T, Prabkate P, Prachayasittikul V. Appropriate technology for the bioconversion of water hyacinth (Eichhornia crassipes) to liquid ethanol: future prospects for community strengthening and sustainable development. EXCLI J.6,167–176 (2007).
  • Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci.9,1621–1651 (2008).
  • Raposo S, Pardao JM, Diaz I, Lima-Costa ME. Kinetic modelling of bioethanol production using agro-industrial by-products. Int. J. Energy Environ.3,1–8 (2009).
  • Mishima D, Tateda M, Ike M, Fujita M. Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification process. Bioresource Technol.97,2166–2172 (2006).
  • Mishima D, Kuniki M, Sei K, Soda S, Ike M, Fujita M. Ethanol production from candidate energy crops: water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.). Bioresource Technol.99,2495–2500 (2008).
  • Chanakya HN, Borgaonkar S, Rajan MGC, Wahi M. Two-phase anaerobic digestion of water hyacinth or urban garbage. Bioresource Technol.42,123–131 (1992).
  • Moorhead KK, Nordstedt RA. Batch anaerobic digestion of water hyacinth: effects of particle size, plant nitrogen content, and inoculum volume. Bioresource Technol.44,71–76 (1993).
  • Kivaisi AK, Mtila M. Production of biogas from water hyacinth (Eichhornia crassipes) (Mart) (Solms) in a two-stage bioreactor. World J. Microb. Biot.14,125–131 (1998).
  • Singhal V, Rai JPN. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresource Technol.86,221–225 (2003).
  • Verma VK, Singh YP, Rai JPN. Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresource Technol.98,1664–1669 (2007).
  • Abbasi SA, Nipaney PC, Schaumberg GD. Bioenergy potential of eight common aquatic weeds. Biol. Wastes34,359–366 (1990).
  • Abbasi SA, Nipaney PC, Panholzer MB. Biogas production from the aquatic weed Pistia (Pistia stratiotes). Bioresource Technol.37,211–214 (1991).
  • Alvarez R, Liden G. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano. Waste Manage.28,1933–1940 (2008).
  • Wilkie AC. Biomethane from biomass, biowaste and biofuels. In: Bioenergy. Wall JD, Harwood CS, Demain A (Eds). American Society for Microbiology Press, Washington, DC, USA, 195–205 (2008).
  • Malik A. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ. Int.33,122–138 (2007).
  • Taheruzzaman Q, Kushari DP. Evaluation of some common aquatic macrophytes cultivated in enriched water as possible source of protein and biogas. Aquat. Ecol.23,207–212 (1989).
  • Cicek N, Lambert S, Venema HD, Snelgrove KR, Bifbeau EL, Grosshans R. Nutrient removal and bio-energy production from Netley-Libau Marsh at Lake Winnipeg through annual biomass harvesting. Biomass Bioenerg.30,529–536 (2006).
  • Rodriguez-Gallego LR, Mazzeo N, Gorga J et al. The effects of an artificial wetland dominated by free-floating plants on the restoration of a subtropical, hypertrophic lake. Lakes Reservoirs Res. Manage.9,203–215 (2004).
  • Ogutu-Ohwayo R, Hecky RE, Cohen AS, Kaufman L. Human impacts on the African great lakes. Environ. Biolog. Fishes50,117–131 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.