686
Views
82
CrossRef citations to date
0
Altmetric
Review

Bacterial biofilms: the powerhouse of a microbial fuel cell

, &
Pages 589-604 | Published online: 09 Apr 2014

Bibliography

  • Lovley DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr. Opin. Biotechnol.17,327–332 (2006).
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol.7(5),375–381 (2009).
  • Kim BH, Kim HJ, Hyun MS, Park DS. Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. J. Microb. Biotech.9,127–131 (1999).
  • Reimers CE, Tender LM, Fertig S, Wang W. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol.35(1),192–195 (2001).
  • Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science295(5554),483–485 (2002).
  • Tender LM, Reimers CE, Stecher HA et al. Harnessing microbially generated power on the seafloor. Nat. Biotechnol.20(8),821–825 (2002).
  • Tender L, Gray S, Groveman E et al. The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy. J. Power Sources179(2),571–575 (2008).
  • Holmes DE, Bond DR, O‘Neil RA, Reimers CE, Tender LR, Lovley DR. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol.48,178–190 (2004).
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes.Appl. Environ. Microbiol.69,1548–1555 (2003).
  • Lovley DR. Bug juice: harvesting electricity with microorganisms. Nat. Rev. Microbiol.4(10),497–508 (2006).
  • Kim GT, Webster G, Wimpenny JW, Kim BH, Kim HJ, Weightman AJ. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol.101(3),698–710 (2006).
  • Kim BH, Chang IS, Gadd GM. Challenges in microbial fuel cell development and operation. A ppl. Microbiol. Biotechnol.76(3),485–494 (2007).
  • Ishii S, Watanabe K, Yabuki S, Logan BE, Sekiguchi Y. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl. Env. Microbiol.74(23),7348–7355 (2008).
  • Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng.97(6),1398–1407 (2007).
  • Wei D, Zhang X. Current production by a deep-sea strain Shewanella sp. DS1. Curr. Microbiol.55(6),497–500 (2007).
  • Xing D, Zuo Y, Cheng S, Regan JM, Logan BE. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol.42(11),4146–4151 (2008).
  • Malki M, De Lacey AL, Rodriguez N, Amils R, Fernandez VM. Preferential use of an anode as an electron acceptor by an acidophilic bacterium in the presence of oxygen. Appl. Environ. Microbiol.74(14),4472–4476 (2008).
  • Lovley DR. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol.19(6),564–571 (2008).
  • Pham TH, Boon N, Aelterman P et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl. Microbiol. Biotechnol.77(5),1119–1129 (2008).
  • Vandecandelaere I, Nercessian O, Faimali M et al. Bacterial diversity of the cultivable fraction of a marine electroactive biofilm. Bioelectrochem.78(1),62–68 (2010).
  • Chang IS, Moon H, Bretschger O et al. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol.16(2),163–177 (2006).
  • Liu Z, Li H, Liu J, Su Z. Effects of inoculation strategy and cultivation approach on the performance of microbial fuel cell using marine sediment as bio-matrix. J. Appl. Microbiol.104(4),1163–1170 (2008).
  • Zuo Y, Xing D, Regan JM, Logan BE. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol.74(10),3130–3137 (2008).
  • Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv.25(5),464–482 (2007).
  • Rabaey I, Ossieur W, Verhaege M, Verstraete W. Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci. Technol.52(1–2),515–523 (2005).
  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environ. Sci. Technol.39(20),8077–8082 (2005).
  • Rabaey K, Lissens G, Siciliano SD, Verstraete W. A microbial fuel cell cabable of converting glucose to electricity at high rate and efficiency. Biotech. Lett.25,1531–1535 (2003).
  • Rabaey K, Boon N, Hofte M, Verstraete W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol.39(9),3401–3408 (2005).
  • Schroder U, Niessen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed.42(25),2880–2883 (2003).
  • Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng.81(3),348–355 (2003).
  • Kim BH, Park HS, Kim HJ et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol.63(6),672–681 (2004).
  • Holmes DE, O‘Neil RA, Vrionis HA et al. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J.8,663–677 (2007).
  • Jung S, Regan JM. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl. Microbiol. Biotechnol.77,393–402 (2007).
  • Potter MC. Electrical effects accompanying the decomposition of organic compunds. Proc. R. Soc. Lond. B84,260–276 (1911).
  • Potter MC. On the difference of potential due to the vital activity of microorganisms. Proc. Univ. Durham Phil. Soc.3,245–249 (1910).
  • Rosenbaum M, Zhao F, Schroder U, Scholz F. Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed. Engl.45(40),6658–6661 (2006).
  • Karube I, Matsunaga T, Tsuru S, Suzuki S. Biochemical fuel cell utilizing immobilized cells of Clostridilum butyricum.Biotechnol. Bioeng.19,1727–1733 (1977).
  • Shukla AK, Suresh P, Berchmans S, Rajendran A. Biological fuel cells and their applications. Curr. Sci.87(4),455–468 (2004).
  • Katz E, Shipway AN, Wilner I. In: Handook of Fuel Cells – Fundamentals, Technology, and Application, Vielstich W, Lamm A, Gasteiger HA (Eds). John Wiley & Sons, Ltd, Chichester, UK, 355–381 (2003).
  • Logan BE, Hamelers B, Rozendal R et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol.40(17),5181–5192 (2006).
  • Bennetto HP, Delaney GM, Mason JR, Roller SD, Stirling JL, Thurston CF. The sucrose fuel cell: efficient biomass conversion using a microbial catalyst. Biotechnol. Lett.7(10),699–704 (1985).
  • Newton GJ, Mori S, Nakamura R, Hashimoto K, Watanabe K. Analyses of current-generation mechanisms of Shewanella loihica PV-4 in microbial fuel cells in comparison with Shewanella oneidensis MR-1. Appl. Environ. Microbiol., AEM. DOI:10.1128/AEM.01142-09
  • Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci.105(10),3968–3973 (2008).
  • Von Canstein H, Ogawa J, Shimizu S, Lloyd JR. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol.74,615–623 (2008).
  • Nevin KP, Lovley DR. Novel mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans.Appl. Environ. Microbiol.68,2294–2299 (2002).
  • Pham TH, Boon N, De Maeyer K, Hofte M, Rabaey K, Verstraete W. Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl. Microbiol. Biotechnol.80(6),985–993 (2008).
  • Hernandez ME, Kappler A, Newman DK. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol.70(2),921–928 (2004).
  • Lanthier M, Gregory KB, Lovley DR. Growth with high planktonic biomass in Shewanella oneidensis fuel cells. FEMS Microbiol. Lett.278(1),29–35 (2008).
  • Ieropoulos I, Winfield J, Greenman J. Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresource Technology (2010).
  • Picioreanu C, Head IM, Katuri KP, Van Loosdrecht MC, Scott K. A computational model for biofilm-based microbial fuel cells. Water Res.41(13),2921–2940 (2007).
  • Kim HJ, Hyun MS, Chang IS, Kim BH. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens.J. Microbiol. Biotech.9,365–367 (1999).
  • Pham CA, Jung SJ, Phung NT et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett.223,129–134 (2003).
  • Park HS, Kim BH, Kim HS et al. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe7,297–306 (2001).
  • Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol.21,1229–1232 (2003).
  • Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol.70(2),1234–1237 (2004).
  • Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by the marine sediment fuel cell. Appl. Environ. Microbiol.70,6023–6030 (2004).
  • Baron D, Labelle E, Coursolle D, Gralnick JA, Bond DR. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J. Biol. Chem.284(42),28865–28873 (2009).
  • Bond DR, Lovley DR. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans.Appl. Environ. Microbiol.71,2186–2189 (2005).
  • Nevin KP, Lovley DR. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens.Appl. Environ. Microbiol.66,2248–2251 (2000).
  • Childers SE, Ciufo S, Lovley DR. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Naturet416(6882),767–769. (2002).
  • Beliaev AS, Klingeman DM, Klappenbach JA et al. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol.187(20),7138–7145 (2005).
  • Coppi MV, Leang C, Sandler SJ, Lovley DR. Development of a genetic system for Geobacter sulfurreducens.Appl. Environ. Microbiol.67,3180–3187 (2001).
  • Bretschger O, Obraztsova A, Sturm CA et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl. Environ. Microbiol.73(21),7003–7012 (2007).
  • Mehta T, Coppi MV, Childers SE, Lovley DR. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol.71,8634–8641 (2005).
  • Leang C, Coppi MV, Lovley DR. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.J. Bacteriol.185,2096–2103 (2003).
  • Mehta T, Childers SE, Glaven R, Lovley DR, Mester T. A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens.Microbiol.152,2257–2264 (2006).
  • Holmes DE, Chaudhuri SK, Nevin KP et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens.Env. Microbiol.8(10), 1805–1815 (2006).
  • Hartshorne RS, Reardon CL, Ross D et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl Acad. Sci. USA,106(52),22169–22174 (2009).
  • Meitl LA, Eggleston CM, Colberg PJS, Khare N, Reardon CL, Shi L. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochim. Cosmochim. Acta73(18),5292–5307 (2009).
  • Shi L, Deng S, Marshall MJ et al. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J. Bacteriol.190(15),5512–5516 (2008).
  • Lower BH, Yongsunthon R, Shi L et al. Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl. Environ. Microbiol.75(9),2931–2935 (2009).
  • Gorby YA, Yanina S, McLean JS et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA103,11358–11363 (2006).
  • Zhang T, Cui C, Chen S et al. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli.Chem. Commun. (Camb) (21),2257–2259 (2006).
  • Qiao Y, Li CM, Lu Z, Ling H, Kang A, Chang MW. A time-course transcriptome analysis of Escherichia coli with direct electrochemistry behavior in microbial fuel cells. Chem. Commun. (Camb) (41),6183–6185 (2009).
  • Qiao Y, Li CM, Bao SJ, Lu Z, Hong Y. Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. (Camb) (11),1290–1292 (2008).
  • Zhang T, Cui C, Chen S, Yang H, Shen P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Comm.10(2),293–297 (2008).
  • Lovley DR, Nevin KP. Electricity production with electricigens. In: Bioenergy: Microbial contributions to alternative fuels. Wall J,Harwood C, Demain A (Eds). ASM Press, Washington DC, USA, 295–306 (2007).
  • Nevin KP, Richter H, Covalla SF et al. Power output and Columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol.10(10),2505–2514 (2008).
  • Logan BE, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Env. Sci. Tech.41,3341–3346 (2007).
  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol.72,7345–7348 (2006).
  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature435,1098–1101 (2005).
  • Juarez K, Kim BC, Nevin K et al. PilR, a transcriptional regulator for pilin and other genes required for Fe(III) reduction in Geobacter sulfurreducens.J. Mol. Microbiol. Biotechnol.16(3–4),146–158 (2009).
  • Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR. Electricity generation by Geobacter sulfurreducens attached to gold electrodes. Langmuir24(8),4376–4379 (2008).
  • Reguera G, Pollina RB, Nicoll JS, Lovley DR. Possible nonconductive role of Geobacter sulfurreducens pili nanowires in biofilm formation. J. Bacteriol.189,2125–2127 (2007).
  • Nevin KP, Kim B-C, Glaven RH et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE4(5),e5628 (2009).
  • Richter H, Nevin KP, Jia HF, Lowy DA, Lovley DR, Tender LM. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ. Environ. Sci.2(5),506–516 (2009).
  • Methé B A, Nelson KE, Eisen J A et al. The genome of Geobacter sulfurreducens: insights into metal reduction in subsurface environments. Science.302,1967–1969 (2003).
  • Rollefson JB, Levar CE, Bond DR. Identification of genes involved in biofilm formation and respiration via mini-himar transposon mutagenesis of Geobacter sulfurreducens.J. Bacteriol.191(13),4207–4217 (2009).
  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate elecron transfer. Appl. Environ. Microbiol.70(9),5373–5382 (2004).
  • Zhang K, Martiny AC, Reppas NB et al. Sequencing genomes from single cells by polymerase cloning. Nat. Biotechnol.24,680–686 (2006).
  • Borole A, O ‘Neill H, Tsouris C, Cesar S. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum.Biotechnol. Lett.30(8),1367–1372 (2008).
  • Zhao F, Rahunen N, Varcoe J R et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Tech.42(13),4971–4976 (2008).
  • Zuo Y, Cheng S, Call D, Logan BE. Tubular membrane cathodes for scalable power generation in microbial fuel cells. Env. Sci. Tech.41,3347–3353 (2007).
  • Walker AL, Walker JCW. Biological fuel cell and an application as a reserve power source. J. Power Source.160(1),123–129 (2006).
  • Prasad D, Arun S, Murugesan M et al. Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell. Biosens. Bioelectron.22(11),2604–2610 (2007).
  • Parameswaran P, Torres CI, Lee H-S, Krajmalnik-Brown R, Rittmann BE. Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnol. Bioeng.103(3),513–523 (2009).
  • Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron.22(8),1672–1679 (2007).
  • Logan BE, Hamelers B, Rozendal R et al. Microbial fuel cells: methodology and technology. Environ. Sci. Tech.40(17),5181–5192 (2006).
  • He Z, Minteer SD, Angenent LT. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol.39,5262–5267 (2005).
  • Franks AE, Nevin KP, Jia H et al. Novel strategy for 3D real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energ. Environ. Sci.2(1),113–119 (2009).
  • Logan BE, Regan JM. Microbial fuel cells-challenges and applications. Environ. Sci. Technol.40(17),5172–5180 (2006).
  • Yi H, Nevin KP, Kim BC et al. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics24(12),3498–3503 (2009).
  • Cachet H, El Moustafid T, Herbert-Gullou D, Festy D, Touzain S, Tribollet B. Characterization of deposits by direct observation and by electrochemical methods on a conductive transparent electrode. Application to biofilm and scale deposit under cathodic protection. Electrochim. Acta46(24–25),3851–3857 (2001).
  • Torres CI, Markus AK, Rittmann BE. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng.100(5),872–878 (2008).
  • Herbert-Guillou D, Tribollet B, Festy D, Kiènè L. In situ detection and characterization of biofilm in waters by electrochemical methods. Electrochim. Acta45(7),1067–1075 (1999).
  • Muñoz-Berbel X, Muñoz FJ, Vigués N, Mas J. On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network. Sensor Actuator. B Chem.118(1–2),129–134 (2006).
  • Dheilly A, Linossier I, Darchen A, Hadjiev D, Corbel C, Alonso V. Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry. Appl. Microbiol. Biotechnol.79(1),157–164 (2008).
  • Hernandez ME, Newman DK. Extracellular electron transfer. Cell. Mol. Life Sci.58(11),1562–1571 (2001).
  • Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR. Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl. Environ. Microbiol.74(23),7329–7337 (2008).
  • Franks AE, Nevin KP, Glaven RH, Lovley DR. Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms. ISME J.4(4),509–519 (2010).
  • Torres CI, Marcus AK, Lee H-S, Parameswaran P, Krajmalnik-Brown R, Rittmann BE. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev.34(1),3–17 (2010).
  • Lovley DR. Extracellular electron transfer: wires, capacitors, iron lungs, and more. Geobiology6(3),225–231 (2008).
  • Torres CI, Marcus AK, Parameswaran P, Rittmann BE. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environ. Sci. Technol.42(17),6593–6597 (2008).
  • Dumas C, Basseguy R, Bergel A. Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta53(16),5235–5241 (2008).
  • Mahadevan R, Bond DR Butler JE et al. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl. Environ. Microbiol.72(2),1558–1568 (2006).
  • Picioreanu C, Van Loosdrecht MCM, Curtis TP, Scott K. Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. Bioelectrochemistry78(1): 8–24. (2010).
  • Rozendal RA, Hamelers HVM, Buisman CJN. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Tech.40(17),5206–5211 (2006).
  • Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Tech.41(23),8154–8158 (2007).
  • Gil GC, Chang IS, Kim BH et al. Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens. Bioelectron.18(4),327–334 (2003).
  • Cheng S, Liu H, Logan BE. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Env. Sci. Tech.40(2426–2432),(2006).
  • Watanabe K. Recent developments in microbial fuel cell technologies for sustainable bioenergy. J. Biosci. Bioeng.106(6),528–536 (2008).
  • Lee H-S, Torres CI, Rittmann BE. Effects of substrate diffusion and anode potential on kinetic parameters for anode-respiring bacteria. Env. Sci. Tech.43(19),7571–7577 (2009).
  • Borole AP, O’Neill H, Tsouris C, Cesar S. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnol. Lett.30(8),1367–1372 (2008).
  • Izallalen M, Mahadevan R, Burgard A et al.Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab. Eng.10(5),267–275 (2008).
  • Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration. Env. Microbiol.6,596–604 (2004).
  • Kato MA, Torres CI, Rittmann BE. Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol. Bioeng.98(6),1171–1182 (2007).
  • Aelterman P, Freguia S, Keller J, Verstraete W, Rabaey K. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol.78(3),409–418 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.