116
Views
2
CrossRef citations to date
0
Altmetric
Review

Recent developments in microalgae for biodiesel production

, &
Pages 631-643 | Published online: 09 Apr 2014

Bibliography

  • Joshi Rm, Pegg MJ. Flow properties of biodiesel fuel blends at low temperatures. Fuel86(1–2),143–151 (2007).
  • Demirbas A. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conver. Manage.47(15–16),2271–2282 (2006).
  • Cetinkaya M, Ulusoy Y, Tekin Y, Karaosmanoglu F. Engine and winter road test performances of used cooking oil originated biodiesel. Energy Conver. Manage.46(7–8),1279–1291 (2005).
  • Krawczyk T. Biodiesel – alternative fuel makes inroads but hurdles remain. Information7,801–829 (1996).
  • Baveja Jk, Willcox Mdp, Hume Ebh, Kumar N, Odell R, Poole-Warren L. Furanones as potential anti-bacterial coatings on biomaterials. Biomaterials25(20),5003–5012 (2004).
  • Ma Fr, Hanna Ma. Biodiesel production: an article. Biores. Technol.70(1),1–15 (1999).
  • Wyatt Vt, Hess Ma, Dunn Ro, Foglia Ta, Haas Mj, Marmer Wn. Fuel properties and nitrogen oxide emission levels of biodiesel produced from animal fats. J. Am. Oil Chem. Soc.82(8),585–591 (2005).
  • Anon. Growing algae could cut the cost of producing biodiesel. Prof. Eng.20(9),45–45 (2007).
  • Demirbas A. Potential resources of nonedible oils for biodiesel. Energy Sources Part B-Economics Planning and Policy4(3),310–314 (2009).
  • Gouveia L, Oliveira Ac. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol.36(2),269–274 (2009).
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends in Biotechnology26(3),126–131 (2008).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Dinh Ltt, Guo Yy, Mannan Ms. Sustainability evaluation of biodiesel production using multicriteria decision-making. Environ. Prog. Sustainable Energy28(1),38–46 (2009).
  • Li Q, Du W, Liu Dh. Perspectives of microbial oils for biodiesel production. Appl. Microbiol. Biotechnol.80(5),49–756 (2008).
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol.65(6),635–648 (2004).
  • Pienkos Pt, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioproducts Biorefining-Biofpr.3(4),431–440 (2009).
  • Borowitzka Ma. Algal biotechnology products and processes – matching science and economics. J. Appl. Phycol.4(3),267–279 (1992).
  • Hu Q, Sommerfeld M, Jarvis E et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J.54(4),621–639 (2008).
  • Borowitzka Ma. Algal Biotechnology Products and Processes – Matching Science and Economics J. Appl. Phycol.4(3),267–279 (1992).
  • Griffiths Mj, Harrison Stl. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol.21(5),493–507 (2009).
  • Rodolfi L, Chini Zittelli G, Bassi N et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng.102(1),100–112 (2009).
  • Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T. Characterization of marine microalga, Scenedesmus sp strain jpcc ga0024 toward biofuel production. Biotechnol. Lett.31(9),1367–1372 (2009).
  • Da Silva Tl, Reis A, Medeiros R, Oliveira Ac, Gouveia L. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl. Biochem. Biotechnol.159(2),568–578 (2009).
  • Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol.84(2),281–291 (2009).
  • Gouveia L, Marques Ae, Da Silva Tl, Reis A. Neochloris oleabundansutex #1185: a suitable renewable lipid source for biofuel production. J. Ind. Microbiol. Biotechnol.36(6),821–826 (2009).
  • Tornabene Tg, Holzer G, Lien S, Burris N. Lipid-composition of the nitrogen starved green-alga Neochloris-oleoabundans. Enzyme Microbial Technol.5(6),435–440 (1983).
  • Li Yq, Horsman M, Wang B, Wu N, Lan Cq. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol.81(4),629–636 (2008).
  • Pruvost J, Van Vooren G, Cogne G, Legrand J. Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Biores. Technol.100(23),5988–5995 (2009).
  • Fuentes-Grunewald C, Garces E, Rossi S, Camp J. Use of the Dinoflagellate karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol.36(9),1215–1224 (2009).
  • Sobczuk Tm, Chisti Y. Potential fuel oils from the microalga Choricystis minor. J. Chem. Technol. Biotechnol.85(1),100–108 (2010).
  • Kong Qx, Li L, Martinez B, Chen P, Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl. Biochem. Biotechnol.160(1),9–18 (2010).
  • Miao Xl, Wu Qy. Biodiesel production from heterotrophic microalgal oil. Biores. Technol.97(6),841–846 (2006).
  • Liang Yn, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett.31(7),1043–1049 (2009).
  • Xu H, Miao Xl, Wu Qy. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol.126(4),499–507 (2006).
  • Johnson Mb, Wen Zy. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy & Fuels23,5179–5183 (2009).
  • Beer Ll, Boyd Es, Peters Jw, Posewitz Mc. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol.20(3),264–271 (2009).
  • Molnar A, Bassett A, Thuenemann E et al. Highly specific gene silencing by artificial micrornas in the unicellular alga Chlamydomonas reinhardtii. Plant J.58(1),165–174 (2009).
  • Zhao T, Wang W, Bai X, Qi Yj. Gene silencing by artificial micrornas in Chlamydomonas. Plant J.58(1),157–164 (2009).
  • Kitaya Y, Azuma H, Kiyota M. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis. Adv. Space Res.35(9),1584–1588 (2005).
  • Carvalho Ap, Meireles La, Malcata Fx. Microalgal reactors: a article of enclosed system designs and performances. Biotechnology Progress22(6),1490–1506 (2006).
  • Andersen RA. Algal Cultuing Techniques: Long-Term Macroalgal Culture Maintenance. Elsevier Inc., San Diego, CA, USA, 11,162 (2005).
  • Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol.57(3),287–293 (2001).
  • Weng Hx, Qin Yc, Sun Xw, Chen Xh, Chen Jf. Effects of light intensity on the growth of Cryptomonas sp. (Cryptophyceae). Environ. Geol.57(1),9–15 (2009).
  • Yang Sw, Jin Xc. Critical light intensities for Microcystis aeruginosa, Scenedesmus quadricauda and Cyclotella sp and competitive growth patterns under different light: N: P ratios. J. Freshwater Ecol.23(3),387–396 (2008).
  • Wang Cy, Fu Cc, Liu Yc. Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. J.37(1),21–25 (2007).
  • Tang Hy, Gaecia Med, Abunasser N, Chen M, Ng Kys, Salley So. Factors on growth of the microalgae Dunaliella tertiolecta for biodiesel production. Energy & Fuels(2010) (In Press).
  • Suzuki T, Matsuo T, Ohtaguchi K, Koide K. Gas-sparged bioreactors for CO2 fixation by Dunaliella-tertiolecta. J. Chem. Technol. Biotechnol.62(4),351–358 (1995).
  • Horiuchi Ji, Ohba I, Tada K, Kobayashi M, Kanno T, Kishimoto M. Effective cell harvesting of the halotolerant microalga Dunaliella tertiolecta with ph control. J. Biosci. Bioeng.95(4),412–415 (2003).
  • Cheng Lh, Zhang L, Chen Hl, Gao Cj. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation Purification Technol.50(3),324–329 (2006).
  • Keffer Je, Kleinheinz Gt. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol.29(5),275–280 (2002).
  • Yoo C, Jun Sy, Lee Jy, Ahn Cy, Oh Hm. Selection of microalgae for lipid production under high levels carbon dioxide. Biores. Technol.101,S71–S74 (2010).
  • Ota M, Kato Y, Watanabe H et al. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate. Biores. Technol.100(21),5237–5242 (2009).
  • Chiu Sy, Kao Cy, Tsai Mt, Ong Sc, Chen Ch, Lin Cs. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Biores. Technol.100(2),833–838 (2009).
  • Sanchez S, Martinez Me, Molina E, Delacasa Ja. The influence of temperature on the growth and fatty-acid composition of skeletonema-constatum in a batch photobioreactor. J. Chem. Technol. Biotechnol.62(2),148–152 (1995).
  • Kitaya Y, Xiao L, Masuda A, Ozawa T, Tsuda M, Omasa K. Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the Symbiotic dinoflagellate, Amphidinium sp. J. Appl. Phycol.20(5),737–742 (2008).
  • Barbosa Mj, Albrecht M, Wijffels Rh. Hydrodynamic stress and lethal events in sparged microalgae cultures. Biotechnol. Bioeng.83(1),112–120 (2003).
  • Miron As, Garciia Mcc, Gomez Ac, Camacho Fg, Grima Em, Chisti Y. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem. Eng. J.16(3),287–297 (2003).
  • Camacho Fg, Grima Em, Miron As, Pascual Vg, Chisti Y. Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microbial Technol.29(10),602–610 (2001).
  • Sobczuk Tm, Camacho Fg, Grima Em, Chisti Y. Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst. Eng.28(4),243–250 (2006).
  • Courchesne Nmd, Parisien A, Wang B, Lan Cq. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol.141(1–2),31–41 (2009).
  • Widjaja A, Chien Cc, Ju Yh. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng.40(1),13–20 (2009).
  • Yu Et, Zendejas Fj, Lane Pd, Gaucher S, Simmons Ba, Lane Tw. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J. Appl. Phycol.21(6),669–681 (2009).
  • Liu Zy, Wang Gc, Zhou Bc. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Biores. Technol.99(11),4717–4722 (2008).
  • Qiao Hj, Wang G. Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese J. Oceanol. Limnol.27(4),762–768 (2009).
  • Wei Al, Zhang Xw, Wei D, Chen G, Wu Qy, Yang St. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J. Ind. Microbiol. Biotechnol.36(11),1383–1389 (2009).
  • Gao Cf, Zhai Y, Ding Y, Wu Qy. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energy87(3),756–761 (2010).
  • Cheng Y, Zhou Wg, Gao Cf, Lan K, Gao Y, Wu Qy. Biodiesel production from Jerusalem artichoke (Helianthus tuberosus l.) tuber by heterotrophic microalgae Chlorella protothecoides. J. Chem. Technol. Biotechnol.84(5),777–781 (2009).
  • Hu Q, Zhang C, Sommerfeld M. Biodiesel from algae: lessons learned over the past 60 years and future perspectives. J. Phycol.37,42 (2006).
  • Shen Y, Yuan W, Pei Zj, Wu Q, Mao E. Microalgae mass production methods. Transactions of the ASABE52(4),1275–1287 (2009).
  • Xu L, Weathers Pj, Xiong Xr, Liu Cz. Microalgal bioreactors: challenges and opportunities. Eng. Life Sci.9(3),178–189 (2009).
  • Jorquera O, Kiperstok A, Sales Ea, Embirucu M, Ghirardi Ml. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Biores. Technol.101(4),1406–1413 (2010).
  • Johnson Mb, Wen Zy. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol.85(3),525–534 (2010).
  • Kebede-Westhead E, Pizarro C, Mulbry Ww. Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J. Appl. Phycol.18(1),41–46 (2006).
  • Kaya Vm, Delanoue J, Picard G. A comparative-study of four systems for tertiary waste-water treatment by Scenedesmus-bicellularis - new technology for immobilization. J. Appl. Phycol.7(1),85–95 (1995).
  • Grobbelaar Ju. Photosynthetic characteristics of Spirulina Platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us?. J. Appl. Phycol.19(5),591–598 (2007).
  • Grobbelaar Ju. Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J. Appl. Phycol.21(5),489–492 (2009).
  • Grobbelaar Ju. Upper limits of photosynthetic productivity and problems of scaling. J. Appl. Phycol.21(5),519–522 (2009).
  • Li Xf, Xu H, Wu Qy. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotropic cultivation in bioreactors. Biotechnol. Bioeng.98(4),764–771 (2007).
  • Li Yh, Zhao Zb, Bai Fw. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microbial Technol.41(3),312–317 (2007).
  • Chi Zy, Liu Y, Frear C, Chen Sl. Study of a two-stage growth of dha-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl. Microbiol. Biotechnol.81(6),1141–1148 (2009).
  • Dufreche S, Hernandez R, French T, Sparks D, Zappi M, Alley E. Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J. Am. Oil Chem. Soc.84(2),181–187 (2007).
  • Somashekar D, Venkateshwaran G, Srividya C, Krishnanand, Sambaiah K, Lokesh Br. Efficacy of extraction methods for lipid and fatty acid composition from fungal cultures. World J. Microbiol. Biotechnol.17(3),317–320 (2001).
  • El Hattab M, Culioli G, Piovetti L, Chitour Se, Valls R. Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga Diclyopteris membranacea. J. Chromatogr. A1143(1–2),1–7 (2007).
  • Lee Jy, Yoo C, Jun Sy, Ahn Cy, Oh Hm. Comparison of several methods for effective lipid extraction from microalgae. Biores. Technol.101,S75–S77 (2010).
  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science315(5813),801–804 (2007).
  • Chisti Y. Microalgae as sustainable cell factories. Environ. Eng. Man. J.5,261–274 (2006).
  • Umdu Es, Tuncer M, Seker E. Transesterification of nannochloropsis oculata microalga’s lipid to biodiesel on al2o3 supported CaO and MgO catalysts. Biores. Technol.100(11),2828–2831 (2009).
  • Xiong W, Li Xf, Xiang Jy, Wu Qy. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol.78(1),29–36 (2008).
  • Fajardo Ar, Cerdan Le, Medina Ar, Fernandez Fga, Moreno Pag, Grima Em. Lipid extraction from the microalga Phaeodactylum tricornutum. Euro. J. Lipid Sci. Technol.109(2),120–126 (2007).
  • Gonzalez Mji, Medina Ar, Grima Em, Gimenez Ag, Carstens M, Cerdan Le. Optimization of fatty acid extraction from Phaeodactylum tricornutum utex 640 biomass. J. Am. Oil Chem. Soc.75(12),1735–1740 (1998).
  • Muffler K, Ulber R. Downstream processing in marine biotechnology. In: Marine Biotechnology II, Advances in Biochemical Engineering/Biotechnology. Gal YL, Ulber R (Eds), Springer, Berlin, Germany, 97,63–103 (2005).
  • Tang Hy, Salley So, Ng Kys. Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel87(13–14),3006–3017 (2008).
  • ASTM D6751-08, standard specification for biodiesel fuel blend stock (b100) for middle distillate fuels. In: Annual Book of ASTM Standards. ASTM Press, PA, USA (2008).
  • Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol.86(10),1059–1070 (2005).
  • Tang Hy, De Guzman R, Salley S, Ng Kys. The oxidative stability of biodiesel: effects of fame composition and antioxidant. Lipid Technol.20(11),249–252 (2008).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.