4,260
Views
566
CrossRef citations to date
0
Altmetric
Review

Biofuels from algae: challenges and potential

, , , &
Pages 763-784 | Published online: 10 Apr 2014

Bibliography

  • Parry ML, Intergovernmental Panel on Climate Change, Working Group II, World Meteorological Organization, United Nations Environment Programme. Summary for Policymakers. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (Eds). Cambridge University Press, Cambridge, UK (2007).
  • Dyni JR. Geology and resources of some world oil-shale deposits. In: Scientific Investigations Report 2005-5294. US Geological Survey, VA, USA (2006).
  • Schindler J, Zittel W. Crude Oil – The Supply Outlook. Energy Watch Group, Ottobrunn, Germany, 102 (2008).
  • Energy Information Administration. International Energy Outlook. EIA, DC, USA 284 (2009).
  • Nass LL, Pereira PAA, Ellis D. Biofuels in brazil: an overview. Crop Sci.47,2228–2237 (2007).
  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science319(5867),1235–1238 (2008).
  • Searchinger T, Heimlich R, Houghton RA et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science319(5867),1238–1240 (2008).
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev.106(9),4044–4098 (2006).
  • Dismukes G C, Carrieri D, Bennette N, Ananyev GM, Posewitz MC. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol.19(3),235–240 (2008).
  • Borowitzka MA. Algal biotechnology products and processes – matching science and economics. J. Applied Phycology (4),267–279 (1992).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv.25(3),294–306 (2007).
  • Alabi AO, Tampier M, Bibeau E. Microalgae Technogies and Processes for Biofuels/Bioenergy Production in British Columbia. The BC Innovation Council, BC, Canada (2009).
  • Huntley ME, Redalje DG. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigat. Adapt. Strategies Global Change.12,573–608 (2006).
  • Falkowski PG, Barber RT, Smetacek VV. Biogeochemical controls and feedbacks on ocean primary production. Science281(5374),200–207 (1998).
  • Parker MS, Mock T, Armbrust EV. Genomic insights into marine microalgae. Annu Rev Genet42,619–645 (2008).
  • Sheehan J, Dunahay T, Benemann J, Roessler P. A Look Back at the U.S. Department of Energy’s Aquatic Species Program – Biodiesel from Algae. National Renewable Energy Laboratory, CO, USA, 328 (1998).
  • Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann J R. Biomass productivities in wild type and pigment mutant of Cyclotella sp. (diatom). Appl. Biochem. Biotechnol.157(3),507–526 (2009).
  • Rodolfi L, Chini Zittelli G, Bassi N et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng.102(1),100–112 (2009).
  • Kojima E, Zhang K. Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. J. Biosci. Bioeng.87(6),811–815 (1999).
  • Deschamps P, Moreira D. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes. Mol. Biol. Evol.26(12),2745–2753 (2009).
  • Reeb VC, Peglar MT, Yoon HS et al. Interrelationships of chromalveolates within a broadly sampled tree of photosynthetic protists. Mol. Phylogenet. Evol.53(1),202–211 (2009).
  • He P, Xu S, Zhang H et al. Bioremediation efficiency in the removal of dissolved inorganic nutrients by the red seaweed, Porphyra yezoensis, cultivated in the open sea. Water Res.42(4–5),1281–1289 (2008).
  • Fierro S, Sanchez-Saavedra Mdel P, Copalcua C. Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour. Technol.99(5),1274–1279 (2008).
  • Douskova I, Doucha J, Livansky K et al. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl. Microbiol. Biotechnol.82(1),179–185 (2009).
  • Rosenberg J N, Oyler G A, Wilkinson L, Betenbaugh M J. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol.19(5),430–436 (2008).
  • Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science292(5524),2073–2075 (2001).
  • Lehr F, Posten C. Closed photo-bioreactors as tools for biofuel production. Curr. Opin. Biotechnol.20(3),280–285 (2009).
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol.26(3),126–131 (2008).
  • Borowitzka M A. Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnology (70),313–321 (1999).
  • Krichnavaruk S, Shotipruk A, Goto M, Pavasant P. Supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis with vegetable oils as co-solvent. Bioresour. Technol.99(13),5556–5560 (2008).
  • Maher K D, Bressler D C. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour. Technol.98(12),2351–2368 (2007).
  • US Energy Information Administration. United States Energy Profile. EIA, DC, USA (2010).
  • Gerbens-Leenes W, Hoekstra AY, Van Der Meer TH. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA106(25),10219–10223 (2009).
  • Marchetti A, Parker M S, Moccia L P et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature457(7228),467–470 (2009).
  • Ruiz-Marin A, Mendoza-Espinosa L G, Stephenson T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol.101(1),58–64 (2009).
  • Conley DJ, Paerl HW, Howarth RW et al. Ecology. Controlling eutrophication: nitrogen and phosphorus. Science323(5917),1014–1015 (2009).
  • Liu D, Keesing JK, Xing Q, Shi P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull.58(6),888–895 (2009).
  • US Department of Agriculture. Farm Production Expenditures 2008 Summary. US Department of Agriculture, DC, USA, 80 (2009).
  • Byerlee D, De Janvry A; World Bank. Agriculture for Development. World Bank, DC, USA (2007).
  • Vaccari DA. Phosphorus: a looming crisis. Sci. Am.300(6),54–59 (2009).
  • Funderberg E. Why are nitrogen prices so high? Pasture Range5 (2009).
  • Vance CP. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol.127(2),390–397 (2001).
  • Ryther JH, Dunstan WM. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science171(3975),1008–1013 (1971).
  • Long SR. Rhizobium–legume nodulation: life together in the underground. Cell56(2),203–214 (1989).
  • Inokuchi R, Kuma Ki, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol. Plant116(1),1–11 (2002).
  • Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res. Microbiol.154(3),157–164 (2003).
  • Coale KH, Johnson KS, Chavez FP et al. Southern ocean iron enrichment experiment: carbon cycling in high- and low-si waters. Science304(5669),408–414 (2004).
  • Boyd PW, Law CS, Wong CS et al. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature428(6982),549–553 (2004).
  • Coale KH, Johnson KS, Fitzwater SE et al. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial pacific ocean. Nature383(6600),495–501 (1996).
  • Godman J, Balk J. Genome analysis of chlamydomonas reinhardtii reveals the existence of multiple, compartmentalized iron-sulfur protein assembly machineries of different evolutionary origins. Genetics179(1),59–68 (2008).
  • Yildiz FH, Davies JP, Grossman AC. Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol.104,981–987 (1994).
  • Maathuis FJ. Physiological functions of mineral macronutrients. Curr Opin Plant Biol12(3),250–258 (2009).
  • Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Advances27(4),409–416 (2009).
  • Brussaard CPD. Viral control of phytoplankton populations – a review. J. Eurkaryotic Microbiol.51(2),125–138 (2004).
  • Mayali X, Azam F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eurkaryotic Microbiol.51(2),139–144 (2004).
  • Park M, Yih W, Coats DW. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J. Eurkaryotic Microbiol.51(2),145–155 (2004).
  • Tillmann U. Interactions between planktonic microalgae and protozoan grazers. J. Eurkaryotic Microbiol.51(2),156–168 (2004).
  • Lebeau T, Robert JM. Diatom cultivation and biotechnologically relevant products. Part I. Cultivation at various scales. Appl. Microbiol. Biotechnol.60(6),612–623 (2003).
  • Matsudo MC, Bezerra RP, Sato S, Perego P, Converti A, Carvalho JCM. Repeat fed-batch cultivation of Arthrospira (spirulina) patensis using urea as nitrogen source. Biochem. Engineer. J.43(1),52–57 (2008).
  • Ginzburg M, Ginzburg BZ. Interrelationships of light, temperature, sodium chloride and carbon source in growth of halotolerant and halophilic strains of Dunaliella. Eur. J. Phycology16(3),313–324 (1981).
  • Dubinsky Z, Rotem J. Relations between algal populations and the pH of their media. Oecologia (16),53–69 (1974).
  • Borowitzka MA. Culturing microalgae in outdoor ponds. In: Algal Culturing Techniques Andersen RA (Ed.). Academic Press, NY, USA, 218 (2005).
  • Kulik MM. The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur. J. Plant Pathol.101(6),585–599 (1995).
  • Thyrhaug R, Larsen A, Thingstad Tf, Bratbak G. Stable coexistence in marine algal host–virus systems. Marine Ecol. Progress Series254,27–35 (2003).
  • Bhadury P, Wright PC. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta219(4),561–578 (2004).
  • Pesando D. Antibacterial and antifungal activities of marine algae. Intro. Applied Phycol.3–26 (1990).
  • Gupta AB, Shrivastava GC, On antibiotic properties of some fresh water algae. Hydrobiologia25(1),285–288 (1965).
  • Chu CY, Liao WR, Huang R, Lin LP. Haemagglutinating and antibiotic activities of freshwater microalgae. World J. Microbiol. Biotechnol.20(8),817–825 (2004).
  • Santoyo S, Rodríguez-Meizoso I, Cifuentes A et al. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT Food Science Technol.42(7),1213–1218 (2009).
  • Wolfe GV. The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biological Bull.198(2),225 (2000).
  • Pohnert G. Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. Chem. Bio. Chem.6(6),946–959 (2005).
  • Copping LG, Duke SO. Natural products that have been used commercially as crop protection agents. Pest Management Sci.63(6),524–554 (2007).
  • Berry JP, Gantar M, Perez MH, Berry G, Noriega FG. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar. Drugs6,117–146 (2008).
  • Degray G, Rajasekaran K, Smith F, Sanford J, Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol.127(3),852 (2001).
  • Oard SV, Enright FM. Expression of the antimicrobial peptides in plants to control phytopathogenic bacteria and fungi. Plant Cell Reports25(6),561–572 (2006).
  • Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiology Lett.270(1),1–11 (2007).
  • Rivas L, Luque-Ortega Jr, Andreu D. Amphibian antimicrobial peptides and protozoa: Lessons from parasites. BBA Biomembranes1788(8),1570–1581 (2009).
  • Marcos JF, Muñoz A, Pérez-Payá E, Misra S, López-García B. Identification and rational design of novel antimicrobial peptides for plant protection. Ann. Rev. Phytopathol.46,273 (2008).
  • Chen Y, Wang Y, Sun Y, Zhang L, Li W. Highly efficient expression of rabbit neutrophil peptide-1 gene in chlorella ellipsoidea cells. Curr. Genet.39(5),365–370 (2001).
  • Manuell AL, Beligni MV, Elder JH et al. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast. Plant Biotechnol. J.5(3),402–412 (2007).
  • Molenaar AJ, Harris DP, Rajan GH et al. The acute-phase protein serum amyloid a3 is expressed in the bovine mammary gland and plays a role in host defence. Biomarkers14(1),26–37 (2009).
  • Li SS, Tsai HJ. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish Shellfish Immunol.26(2),316–325 (2009).
  • Kuci Ska J, Lonc E, Rydzanicz K. Transgenic bioinsecticides inimical to parasites, but imical to environment. Wiadomo Ci Parazytologiczne49(1),11 (2003).
  • Rosi-Marshall Ej, Tank Jl, Royer Tv et al. Toxins in transgenic crop byproducts may affect headwater stream ecosystems. Proc. Natl Acad. Sci. USA104(41),16204 (2007).
  • Bøhn T, Primicerio R, Hessen DO, Traavik T. Reduced fitness of Daphnia magna fed a bt-transgenic maize variety. Arch. Environment. Contamin. Toxicol.55(4),584–592 (2008).
  • Hansen FC, Reckermann M, Klein Breteler WCM, Riegman R. Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Marine Ecol. Progress Series102,51–51 (1993).
  • Armbrust EV. The life of diatoms in the World’s oceans. Nature459(7244),185–192 (2009).
  • Roessler PG. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch. Biochem. Biophys.267(2),521–528 (1988).
  • Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP. Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA δ6-desaturase with omega3-preference from the marine microalga micromonas pusilla. Metab. Eng.12(3),233–240 (2009).
  • Napier JA, Beaudoin F, Michaelson LV, Sayanova O. The production of long chain polyunsaturated fatty acids in transgenic plants by reverse-engineering. Biochimie86(11),785–792 (2004).
  • Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet.252(5),572–579 (1996).
  • Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol.31(6),1004–1012 (1995).
  • Poulsen N, Kroger N. A new molecular tool for transgenic diatoms: control of mrna and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J.272(13),3413–3423 (2005).
  • Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C. Transformation of nonselectable reporter genes in marine diatoms. Mar. Biotechnol. (NY)1(3),239–251 (1999).
  • De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res.37(14),e96 (2009).
  • Boynton JE, Gillham NW. Genetics and transformation of mitochondria in the green alga Chlamydomonas. Methods Enzymol.264,279–296 (1996).
  • Boynton JE, Gillham NW. Chloroplast transformation in Chlamydomonas. Methods Enzymol.217,510–536 (1993).
  • Kindle KL, Schnell RA, Fernandez E, Lefebvre PA. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J. Cell Biol.109(6 Pt 1),2589–2601 (1989).
  • Lerche K, Hallmann A. Stable nuclear transformation of Gonium pectorale. BMC Biotechnol.9,64 (2009).
  • Hawkins RL, Nakamura M. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr. Microbiol.38(6),335–341 (1999).
  • Ahlgren G, Lundstedt L, Brett M, Forsberg C. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res.12(4),809–818 (1990).
  • Xin L, Hong-Ying H, Jia Y. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. N. Biotechnol.27(1),59–63 (2009).
  • Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol.66(5),486–496 (2005).
  • Kneip C, Voss C, Lockhart PJ, Maier UG. The cyanobacterial endosymbiont of the unicellular algae rhopalodia gibba shows reductive genome evolution. BMC Evol. Biol.8,30 (2008).
  • Carpenter EJ, Janson S. Intracellular cyanobacterial symbionts in the marine diatom Climacodium frauenfeldianum (bacillariophyceae). J. Phycol.36(3),540–544 (2000).
  • Moheimani NR, Borowitzka MA. Limits to productivity of the alga Pleurochrysis carterae (haptophyta) grown in outdoor raceway ponds. Biotechnol. Bioeng.96(1),27–36 (2007).
  • Blanco AM, Moreno J, Del Campo JA, Rivas J, Guerrero MG. Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl. Microbiol. Biotechnol.73(6),1259–1266 (2007).
  • Doucha J, Livansky K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern european climate. J. Applied Phycology18(6),811–826 (2006).
  • Tao Y, Ferrer Jl, Ljung K et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell133(1),164–176 (2008).
  • Greenwell HC, Laurens LM, Shields RJ, Lovitt RW, Flynn KJ. Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface DOI: 10.1098/rsif.2009.0322 (2009) (Epub ahead of print).
  • Chaisson Mj, Brinza D, Pevzner PA. De novo fragment assembly with short mate-paired reads: does the read length matter? Genome Res.19(2),336–346 (2009).
  • Lister R, Gregory BD, Ecker JR. Next is now: new technologies for sequencing of genomes, transcriptomes, and beyond. Curr. Opin. Plant Biol.12(2),107–118 (2009).
  • Borevitz JO, Maloof JN, Lutes J et al. Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics160(2),683–696 (2002).
  • Galvan A, Gonzalez-Ballester D, Fernandez E. Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas. Adv. Exp. Med. Biol.616,77–89 (2007).
  • Jeong Br Br, Wu-Scharf D, Zhang C, Cerutti H. Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc. Natl Acad. Sci. USA99(2),1076–1081 (2002).
  • Casas-Mollano JA, Van Dijk K, Eisenhart J, Cerutti H. SET3P monomethylates histone H3 on lysine 9 and is required for the silencing of tandemly repeated transgenes in Chlamydomonas. Nucleic Acids Res.35(3),939–950 (2007).
  • Mayfield SP, Manuell AL, Chen S et al. Chlamydomonas reinhardtii chloroplasts as protein factories. Curr. Opin. Biotechnol.18(2),126–133 (2007).
  • Purton S. Tools and techniques for chloroplast transformation of Chlamydomonas. Adv. Exp. Med. Biol.616,34–45 (2007).
  • Bingham SE, Cox JC, Strem MD. Expression of foreign DNA in Chlamydomonas reinhardtii. FEMS Microbiol Lett.53(1–2),77–81 (1989).
  • Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the Arg7 locus. EMBO J.8(10),2803–2809 (1989).
  • Kindle KL. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA87(3),1228–1232 (1990).
  • Mayfield SP, Kindle KL. Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc. Natl Acad. Sci. USA87(6),2087–2091 (1990).
  • Purton S, Rochaix JD. Complementation of a Chlamydomonas reinhardtii mutant using a genomic cosmid library. Plant Mol. Biol.24(3),533–537 (1994).
  • Zhang H, Herman PL, Weeks DP. Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA. Plant Mol. Biol.24(4),663–672 (1994).
  • Vashishtha M, Segil G, Hall JL. Direct complementation of Chlamydomonas mutants with amplified yac DNA. Genomics36(3),459–467 (1996).
  • Hall LM, Taylor KB, Jones DD. Expression of a foreign gene in Chlamydomonas reinhardtii. Gene124(1),75–81 (1993).
  • Fuhrmann M, Oertel W, Hegemann P. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J.19(3),353–361 (1999).
  • Rochaix JD, Van Dillewijn J. Transformation of the green alga Chlamydomonas reinhardii with yeast DNA. Nature296(5852),70–72 (1982).
  • Boynton JE, Gillham NW, Harris EH et al. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science240(4858),1534–1538 (1988).
  • Dunahay TG. Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. Biotechniques15(3),452–455, 457–458, 460 (1993).
  • Brown LE, Sprecher SL, Keller LR. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol. Cell. Biol.11(4),2328–2332 (1991).
  • Rajam MV, Kumar SV. Green alga (Chlamydomonas reinhardtii). Methods Mol. Biol.344,421–433 (2006).
  • Geng DG, Wang YQ, Wang P, Li WB, Sun YR. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (chlorophyta). J. Applied Phycology15(6),451–456 (2003).
  • Sun Y, Yang ZY, Gao XS, Li QY, Zhang QQ, Xu ZK. Expression of foreign genes in Dunaliella by electroporation. Mol. Biotechnol.30(3),185–192 (2005).
  • Feng SY, Xue LX, Liu HT, Lu PJ. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol. Biol. Rep.36(6),1433–1439 (2009).
  • Tan CP, Qin S, Zhang Q, Jiang P, Zhao FQ. Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J. Microbiol.43(4),361–365 (2005).
  • Teng CY, Qin S, Liu JG, Yu DZ, Liang CW, Tseng CK. Transient expression of lacz in bombarded unicellular green alga Haematococcus pluvialis. J. Applied Phycology14(6),497–500 (2002).
  • Hallmann A, Rappel A. Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. Plant J.17(1),99–109 (1999).
  • Fischer H, Robl I, Sumper M, Kroger N. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (bacillariophyceae). J. Phycol.35(1),113–120 (1999).
  • Ten Lohuis MR, Miller DJ. Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of gus in microalgae using heterologous promoter constructs. Plant J.13(3),427–435 (1998).
  • Jarvis EE, Brown LM. Transient expression of firefly luciferase in protoplasts of the green-alga Chlorella ellipsoidea. Curr. Genet.19(4),317–321 (1991).
  • Dawson HN, Burlingame R, Cannons AC. Stable transformation of Chlorella: Rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr. Microbiol.35(6),356–362 (1997).
  • Maruyama M, Horakova I, Honda H, Xing XH, Shiragami N, Unno H. Introduction of foreign DNA into Chlorella saccharophila by electroporation. Biotechnol. Techniques8(11),821–826 (1994).
  • Hawkins Rl, Nakamura M. Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr. Microbiol.38(6),335–341 (1999).
  • Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RD. Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbk operon. Curr. Genet.39(1),49–60 (2001).
  • Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M. Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol.129(1),7–12 (2002).
  • Materna AC. Development of molecular tools in the diatom Phaedactylum tricornutum. Fachbereich Biologie126 (2006).
  • Blowers AD, Bogorad L, Shark KB, Sanford JC. Studies on Chlamydomonas chloroplast transformation: foreign DNA can be stably maintained in the chromosome. Plant Cell1(1),123–132 (1989).
  • Blowers AD, Ellmore GS, Klein U, Bogorad L. Transcriptional analysis of endogenous and foreign genes in chloroplast transformants of Chlamydomonas. Plant Cell2(11),1059–1070 (1990).
  • Goldschmidt-Clermont M. Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res.19(15),4083–4089 (1991).
  • Ishikura K, Takaoka Y, Kato K, Sekine M, Yoshida K, Shinmyo A. Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. J. Biosci. Bioeng.87(3),307–314 (1999).
  • Minko I, Holloway SP, Nikaido S et al. Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol. Gen. Genet.262(3),421–425 (1999).
  • Surzycki R, Greenham K, Kitayama K et al. Factors effecting expression of vaccines in microalgae. Biologicals37(3),133–138 (2009).
  • Weselake RJ, Taylor DC, Rahman MH et al. Increasing the flow of carbon into seed oil. Biotechnol. Adv.27(6),866–878 (2009).
  • Liu X, Brune D, Vermaas W, Curtiss R 3rd. Production and secretion of fatty acids in genetically engineered cyanobacteria. Proc. Natl Acad. Sci. USA DOI: 10.1073/pnas.1001946107 (2009) (Epub ahead of print).
  • Damude HG, Kinney AJ. Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids42(3),179–185 (2007).
  • Wu G, Truksa M, Datla N et al. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat. Biotechnol.23(8),1013–1017 (2005).
  • Uttaro AD. Biosynthesis of polyunsaturated fatty acids in lower eukaryotes. IUBMB Life58(10),563–571 (2006).
  • Guschina IA, Harwood JL. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res.45(2),160–186 (2006).
  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie86(11),807–815 (2004).
  • Benson TJ, Hernandez R, White MG et al. Heterogenous cracking of an unsaturated fatty acid and reaction intermediates on H+ZSM-5 catalyst. Clean.36(8),652–656 (2008).
  • Melis A, Happe T. Hydrogen production. Green algae as a source of energy. Plant Physiol.127(3),740–748 (2001).
  • Sialve B, Bernet N, Bernard O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv.27(4),409–416 (2009).
  • Connolly JD, Hill RA. Triterpenoids. Nat. Prod. Rep.27(1),79–132 (2008).
  • Kirby J, Keasling JD. Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol.60,335–355 (2009).
  • Kalamaki MS, Alexandrou D, Lazari D et al. Over-expression of a tomato N-acetyl-l-glutamate synthase gene (SLNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J. Exp. Bot.60(6),1859–1871 (2009).
  • Yang X, Liang Z, Wen X, Lu C. Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol. Biol.66(1–2),73–86 (2008).
  • Becker W. Microalgae in human and animal nutrition. In: Handbook of Microalgal Culture: Biotechnology & Applied Phycology. Richmond A (Ed.). Blackwell, Oxford, UK, 312–351 (2003).
  • Borowitzka MA. Microalgae for aquaculture: opportunities and constraints. J. Appl. Phycol.9(5),393–401 (1997).
  • Brown MR. Nutritional value and use of microalgae in aquaculture. Avances en nutrición acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola (2003).
  • Iwamoto H. Industrial production of microalgal cell-mass and secondary products – major industrial species – chlorella. In: Handbook of Microalgal Culture: Biotechnology & Applied Phycology. Richmond A (Ed.). Blackwell, Oxford, UK, 255–263 (2003).
  • Vilchez C, Garbayo I, Lobato MV, Vega JM. Microalgae-mediated chemicals production and wastes removal. Enzyme Microbial Technol.20(8),562–572 (1997).
  • Del Campo JA, Moreno J, Rodr Guez H, Angeles Vargas M, Rivas J, Guerrero MG. Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (chlorophyta). J. Biotechnol.76(1),51–59 (2000).
  • Jin E, Polle Jew, Lee H, Hyun S, Chang M. Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol.13(2),165–174 (2003).
  • Ye ZW, Jiang JG, Wu GH. Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol. Advances26(4),352–360 (2008).
  • Ben-Amotz A. Industrial production of microalgal cell-mass and secondary products – major industrial species: Dunaliella. In: Handbook of Microalgal Culture: Biotechnology & Applied Phycology. Blackwell Science, Oxford, UK, 273–280 (2004).
  • Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for β-carotene production. Applied Microbiol. Biotechnol.74(3),517 (2007).
  • Eonseon J, Lee CG, Polle JEW. Secondary carotenoid accumulation in Haematococcus (chlorophyceae): biosynthesis, regulation, and biotechnology. J. Microbiol. Biotechnol.16(6),821–831 (2006).
  • Guerin M, Huntley ME, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol.21(5),210 (2003).
  • Cysewski GR, Lorenz T. Industrial production of microalgal cell-mass and secondary products. Major industrial species – Haematococcus. In: Handbook of Microalgal Culture. Richmond A (Ed.). Blackwell, Oxford, UK, 281–288 (2004).
  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie86(11),807–815 (2004).
  • Ward Op, Singh A. Omega-3/6 fatty acids: alternative sources of production. Process Biochem.40(12),3627–3652 (2005).
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioengin.101(2),87 (2006).
  • Prasanna R, Sood A, Suresh A, Nayak S, Kaushik BD: Potentials and applications of algal pigments in biology and industry. Acta Botanica Hungarica49(1),131–156 (2007).
  • Sekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J. Applied Phycology20(2),113–136 (2008).
  • Stolz P, Obermayer B. Manufacturing microalgae for skin care. Cosmetics Toiletries120(3),99–106 (2005).
  • Acien Fernandez FG, Fernandez Sevilla JM, Egorova-Zachernyuk TA, Molina Grima E. Cost-effective production of 13C, 15N stable isotope-labelled biomass from phototrophic microalgae for various biotechnological applications. Biomol. Engineer.22(5–6),193–200 (2005).
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Applied Microbiol. Biotechnol.65(6),635 (2004).
  • Singh S, Kate BN, Banerjee UC. Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Rev. Biotechnol.25(3),73–95 (2005).
  • Cardozo KHM, Guaratini T, Barros MP et al. Metabolites from algae with economical impact. Comparative Biochem. Physiology (Pt C)146(1–2),60–78 (2007).
  • Hallmann A. Algal transgenics and biotechnology. Transgenic Plant J.1,81–98 (2007).
  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R. A perspective on the biotechnological potential of microalgae. Critical Rev. Microbiol.34(2),77 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.