129
Views
5
CrossRef citations to date
0
Altmetric
Review

Engineering bacterial processes for cellulosic ethanol production

&
Pages 729-743 | Published online: 10 Apr 2014

Bibliography

  • Houghton J. Global warming. Rep. Prog. Phys.68(6),1343–1403 (2005).
  • Jacobson MZ. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci.2(2),148–173 (2009).
  • Ribeiro SK, Younes-Ibrahim PS. Global warming and transport in Brazil – ethanol alternative. Int. J. Veh. Des.27(1–4),118–128 (2001).
  • Demirbas A. Recent progress in biorenewable feedstocks. Energy Educ. Sci. Technol.22(1),69–95 (2008).
  • Luque R, Herrero-Davila L, Campelo JM et al. Biofuels: a technological perspective. Energy Environ. Sci.1(5),542–564 (2008).
  • Gray KA, Zhao LS, Emptage M. Bioethanol. Curr. Opin. Chem. Biol.10(2),141–146 (2006).
  • Wooley R, Ruth M, Glassner D, Sheehan J. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol. Prog.15(5),794–803 (1999).
  • Aden A, Ruth M, Ibsen K et al. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory (NREL)1–154 (2002).
  • Sticklen M. Plant genetic engineering to improve biomass characteristics for biofuels. Curr. Opin. Biotechnol.17(3),315–319 (2006).
  • Dai ZY, Hooker BS, Anderson DB, Thomas SR. Improved plant-based production of e1 endoglucanase using potato: expression optimization and tissue targeting. Mol. Breed.6(3),277–285 (2000).
  • Hyunjong B, Lee DS, Hwang IW. Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J. Exp. Bot.57(1),161–169 (2006).
  • Okumura S, Sawada M, Park YW et al. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res.15(5),637–646 (2006).
  • Schillberg S, Fischer R, Emans N. Molecular farming of recombinant antibodies in plants. Cell. Mol. Life Sci.60(3),433–445 (2003).
  • Schillberg S, Zimmermann S, Voss A, Fischer R. Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Res.8(4),255–263 (1999).
  • Ziegler MT, Thomas SR, Danna KJ. Accumulation of a thermostable endo-1,4-β-d-glucanase in the apoplast of arabidopsis thaliana leaves. Mol. Breed.6(1),37–46 (2000).
  • Oraby H, Venkatesh B, Dale B et al. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res.16(6),739–749 (2007).
  • Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M. Heterologous acidothermus cellulolyticus 1,4-β-endoglucanase e1 produced within the corn biomass converts corn stover into glucose. Appl. Biochem. Biotechnol.137,207–219 (2007).
  • Teymouri F, Alizadeh H, Laureano-Perez L, Dale B, Sticklen M. Effects of ammonia fiber explosion treatment on activity of endoglucanase from acidothermus cellulolyticus in transgenic plant. Appl. Biochem. Biotechnol.113,1183–1191 (2004).
  • Ragauskas AJ, Williams CK, Davison BH et al. The path forward for biofuels and biomaterials. Science311(5760),484–489 (2006).
  • Blaschke L, Legrand M, Mai C, Polle A. Lignification and structural biomass production in tobacco with suppressed caffeic/5-hydroxy ferulic acid-O-methyl transferase activity under ambient and elevated CO2 concentrations. Physiol. Plant.121(1),75–83 (2004).
  • Chabannes M, Barakate A, Lapierre C et al. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl coa reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J.28(3),257–270 (2001).
  • Hu Wj, Harding Sa, Lung J et al. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol.17(8),808–812 (1999).
  • Li YC, Irwin DC, Wilson DB. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca ce19a. Appl. Environ. Microbiol.73(10),3165–3172 (2007).
  • Pilate G, Guiney E, Holt K et al. Field and pulping performances of transgenic trees with altered lignification. Nat. Biotechnol.20(6),607–612 (2002).
  • Ralph J, Akiyama T, Kim H et al. Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J. Biol. Chem.281(13),8843–8853 (2006).
  • Chapple C, Ladisch M, Meilan R. Loosening lignin’s grip on biofuel production. Nat. Biotechnol.25(7),746–748 (2007).
  • Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol.25(7),759–761 (2007).
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J.382,769–781 (2004).
  • Mccartney L, Blake AW, Flint J et al. Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc. Natl. Acad. Sci. USA103(12),4765–4770 (2006).
  • Obembe OO, Jacobsen E, Timmers J et al. Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants. J. Plant Res.120(5),605–617 (2007).
  • Cosgrove DJ. Loosening of plant cell walls by expansins. Nature407(6802),321–326 (2000).
  • Saloheimo M, Paloheimo M, Hakola S et al. Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur. J. Biochem.269(17),4202–4211 (2002).
  • Henriksson G, Johansson G, Pettersson G. A critical review of cellobiose dehydrogenases. J. Biotechnol.78(2),93–113 (2000).
  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng.98(1),112–122 (2007).
  • Montalvo-Rodriguez R, Haseltine C, Huess-Larossa K et al. Autohydrolysis of plant polysaccharides using transgenic hyperthermophilic enzymes. Biotechnol. Bioeng.70(2),151–159 (2000).
  • Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev.70(2),283 (2006).
  • Eriksson ME, Israelsson M, Olsson O, Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat. Biotechnol.18(7),784–788 (2000).
  • Dodd An, Salathia N, Hall A et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science309(5734),630–633 (2005).
  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res.48(8),3713–3729 (2009).
  • Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci.9(9),1621–1651 (2008).
  • Sousa LD, Chundawat SPS, Balan V, Dale BE. ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol.20(3),339–347 (2009).
  • Mosier N, Wyman C, Dale B et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol.96(6),673–686 (2005).
  • Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T. Evaluation of pretreatment with pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng.100(6),637–643 (2005).
  • Maki M, Leung KT, Qin WS. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci.5(5),500–516 (2009).
  • Schulein M. Kinetics of fungal cellulases. Biochem. Soc. Trans.26(2),164–167 (1998).
  • Olsson L, Hahnhagerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol.18(5),312–331 (1996).
  • Sun Y, Cheng JY. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol.83(1),1–11 (2002).
  • Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol. Adv.27(6),833–848 (2009).
  • Peri S, Karra S, Lee YY, Karim MN. Modeling intrinsic kinetics of enzymatic cellulose hydrolysis. Biotechnol. Prog.23(3),626–637 (2007).
  • Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol.31(3),353–364 (2002).
  • Alkasrawi M, Eriksson T, Borjesson J et al. The effect of tween-20 on simultaneous saccharification and fermentation of softwood to ethanol. Enzyme Microb. Technol.33(1),71–78 (2003).
  • Borjesson J, Peterson R, Tjerneld F. Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb. Technol.40(4),754–762 (2007).
  • Kim SB, Kim HJ, Kim CJ. Enhancement of the enzymatic digestibility of waste newspaper using tween. Appl. Biochem. Biotechnol.130(1–3),486–495 (2006).
  • Wen F, Nair NU, Zhao HM. Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr. Opin. Biotechnol.20(4),412–419 (2009).
  • Lin L, Meng X, Liu PF et al. Improved catalytic efficiency of endo-β-1,4-glucanase from Bacillus subtilis bme-15 by directed evolution. Appl. Microbiol. Biotechnol.82(4),671–679 (2009).
  • Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y. Directed evolution of endoglucanase III (Cel12a) from Trichoderma reesei. Appl. Microbiol. Biotechnol.83(4),649–657 (2009).
  • Chundawat SPS, Balan V, Dale BE. High- throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol. Bioeng.99(6),1281–1294 (2008).
  • Bayer EA, Lamed R, Himmel ME. The potential of cellulases and cellulosomes for cellulosic waste management. Curr. Opin. Biotechnol.18(3),237–245 (2007).
  • Arai T, Matsuoka S, Cho HY et al. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation. Proc. Natl Acad. Sci. USA104(5),1456–1460 (2007).
  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl. Environ. Microbiol.70(2),1207–1212 (2004).
  • Tu MB, Chandra RP, Saddler JN. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol. Prog.23(2),398–406 (2007).
  • Feng T, Du YM, Yang JH, Li J, Shi XW. Immobilization of a nonspecific chitosan hydrolytic enzyme for application in preparation of water-soluble low-molecular-weight chitosan. J. Appl. Polym. Sci.101(3),1334–1339 (2006).
  • Panesar PS, Marwaha SS, Kennedy JF. Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biotechnol.81(4),623–635 (2006).
  • Gunasekaran P, Raj KC. Ethanol fermentation technology – Zymomonas mobilis. Curr. Sci.77(1),56–68 (1999).
  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG. Zymomonas mobilis for fuel ethanol and higher value products. In: Biofuels Springer-Verlag Berlin, Berlin, Germany 263–288 (2007).
  • Mohagheghi A, Evans K, Chou YC, Zhang M. Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis ax101. Appl. Biochem. Biotechnol.98,885–898 (2002).
  • Lawford HG, Rousseau JD, Mohagheghi A, Mcmillan JD. Fermentation performance characteristics of a prehydrolyzate- adapted xylose-fermenting recombinant Zymomonas in batch and continuous fermentations. Appl. Biochem. Biotechnol.77–9, 191–204 (1999).
  • Jeon YJ, Svenson CJ, Joachimsthal EL, Rogers PL. Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Biotechnol. Lett.24(10),819–824 (2002).
  • Mohagheghi A, Dowe N, Schell D, Chou Yc, Eddy C, Zhang M. Performance of a newly developed integrant of zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnol. Lett.26(4),321–325 (2004).
  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO. Metabolic engineering of Klebsiella-oxytoca m5a1 for ethanol-production from xylose and glucose. Appl. Environ. Microbiol.57(10),2810–2815 (1991).
  • Wood BE, Ingram LO. Ethanol-production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella-oxytoca containing chromosomally integrated Zymomonas-mobilis genes for ethanol-production and plasmids expressing thermostable cellulase genes from Clostridium-thermocellum. Appl. Environ. Microbiol.58(7),2103–2110 (1992).
  • Wood BE, Yomano LP, York SW, Ingram LO. Development of industrial-medium-required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnol. Prog.21(5),1366–1372 (2005).
  • Ingram Lo, Conway T, Clark DP, Sewell GW, Preston JF. Genetic-engineering of ethanol-production in Escherichia-coli. Appl. Environ. Microbiol.53(10),2420–2425 (1987).
  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO. Genetic-improvement of Escherichia-coli for ethanol-production – chromosomal integration of Zymomonas-mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase-II. Appl. Environ. Microbiol.57(4),893–900 (1991).
  • Dien BS, Nichols NN, O’Bryan PJ, Bothast RJ. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotechnol.84–6, 181–196 (2000).
  • Nichols NN, Dien BS, Bothast RJ. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl. Microbiol. Biotechnol.56(1–2),120–125 (2001).
  • Zaldivar J, Ingram LO. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli ly01. Biotechnol. Bioeng.66(4),203–210 (1999).
  • Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng.65(1),24–33 (1999).
  • Zaldivar J, Martinez A, Ingram LO. Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng.68(5),524–530 (2000).
  • Underwood SA, Buszko ML, Shanmugam KT, Ingram LO. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli ko11 during xylose fermentation. Appl. Environ. Microbiol.68(3),1071–1081 (2002).
  • Underwood SA, Zhou S, Causey TB, Yomano LP, Shanmugam KT, Ingram LO. Genetic changes to optimize carbon partitioning between ethanol and biosynthesis in ethanologenic Escherichia coli. Appl. Environ. Microbiol.68(12),6263–6272 (2002).
  • Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO. Re-engineering Escherichia coli for ethanol production. Biotechnol. Lett.30(12),2097–2103 (2008).
  • Berrios-Rivera SJ, Bennett GN, San KY. Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab. Eng.4(3),217–229 (2002).
  • Zhou S, Iverson AG, Grayburn WS. Engineering a native homoethanol pathway in Escherichia coli b for ethanol production. Biotechnol. Lett.30(2),335–342 (2008).
  • Kim Y, Ingram LO, Shanmugam KT. Construction of an Escherichia coli k-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Appl. Environ. Microbiol.73(6),1766–1771 (2007).
  • Chen K, Iverson AG, Garza EA, Grayburn WS, Zhou S. Metabolic evolution of non-transgenic Escherichia coli sz420 for enhanced homoethanol fermentation from xylose. Biotechnol. Lett.32(1),87–96 (2010).
  • Luo LH, Seo PS, Seo JW, Heo SY, Kim DH, Kim CH. Improved ethanol tolerance in Escherichia coli by changing the cellular fatty acids composition through genetic manipulation. Biotechnol. Lett.31(12),1867–1871 (2009).
  • Trinh CT, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol.74(12),3634–3643 (2008).
  • Burdette DS, Jung SH, Shen GJ, Hollingsworth RI, Zeikus JG. Physiological function of alcohol dehydrogenases and long-chain (C-30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol.68(4),1914–1918 (2002).
  • Desai SG, Guerinot ML, Lynd LR. Cloning of l-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum jw/sl-ys485. Appl. Microbiol. Biotechnol.65(5),600–605 (2004).
  • Shaw AJ, Podkaminer KK, Desai SG et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl Acad. Sci. USA105(37),13769–13774 (2008).
  • Shaw AJ, Hogsett DA, Lynd LR. Identification of the fefe-hydrogenase responsible for hydrogen generation in Thermoanaerobacterium saccharolyticum and demonstration of increased ethanol yield via hydrogenase knockout. J. Bacteriol.191(20),6457–6464 (2009).
  • Georgieva TI, Mikkelsen MJ, Ahring BK. High ethanol tolerance of the thermophilic anaerobic ethanol producer thermoanaerobacter bg1l1. Cent. Eur. J. Biol.2(3),364–377 (2007).
  • Georgieva TI, Skiadas IV, Ahring BK. Effect of temperature on ethanol tolerance of a thermophilic anaerobic ethanol producer thermoanaerobacter a10: modeling and simulation. Biotechnol. Bioeng.98(6),1161–1170 (2007).
  • Tailliez P, Girard H, Millet J, Beguin P. Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium-thermocellum. Appl. Environ. Microbiol.55(1),207–211 (1989).
  • Rani KS, Swamy MV, Seenayya G. Production of ethanol from various pure and natural cellulosic biomass by Clostridium thermocellum strains ss21 and ss22. Process Biochem.33(4),435–440 (1998).
  • Thompson AH, Studholme DJ, Green EM, Leak DJ. Heterologous expression of pyruvate decarboxylase in Geobacillus thermoglucosidasius. Biotechnol. Lett.30(8),1359–1365 (2008).
  • Taylor MP, Esteban CD, Leak DJ. Development of a versatile shuttle vector for gene expression in Geobacillus spp. Plasmid60(1),45–52 (2008).
  • Cripps RE, Eley K, Leak DJ et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng.11(6),398–408 (2009).
  • Taherzadeh MJ, Karimi K. Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources2(4),707–738 (2007).
  • Shene C, Bravo S. Zymomonas mobilis cp4 fed-batch fermentations of glucose–fructose mixtures to ethanol and sorbitol. Appl. Microbiol. Biotechnol.57(3),323–328 (2001).
  • Toma MM, Kalnenieks U, Berzins A, Vigants A, Rikmanis M, Viesturs U. The effect of mixing on glucose fermentation by Zymomonas mobilis continuous culture. Process Biochem.38(9),1347–1350 (2003).
  • Choi GW, Kang HW, Kim YR, Chung BW. Ethanol production by Zymomonas mobilis chz2501 from industrial starch feedstocks. Biotechnol. Bioprocess Eng.13(6),765–771 (2008).
  • Karuppaiya M, Sasikumar E, Viruthagiri T, Vijayagopal V. Optimization of process conditions using response surface methodology (RSM) for ethanol production from waste cashew apple juice by Zymomonas mobilis. Chem. Eng. Commun.196(11),1425–1435 (2009).
  • Cazetta ML, Celligoi M, Buzato JB, Scarmino IS. Fermentation of molasses by Zymomonas mobilis: effects of temperature and sugar concentration on ethanol production. Bioresour. Technol.98(15),2824–2828 (2007).
  • Altintas MM, Eddy CK, Zhang M, Mcmillan JD, Kompala DS. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis. Biotechnol. Bioeng.94(2),273–295 (2006).
  • Fu N, Peiris P. Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus. World J. Microbiol. Biotechnol.24(7),1091–1097 (2008).
  • Leksawasdi N, Joachimsthal EL, Rogers PL. Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol. Lett.23(13),1087–1093 (2001).
  • Um BH, Hanley TR. A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-l bioreactor. Appl. Biochem. Biotechnol.145(1–3),29–38 (2008).
  • Rebros M, Rosenberg M, Stloukal R, Kristofikova L. High efficiency ethanol fermentation by entrapment of Zymomonas mobilis into lentikats®. Lett. Appl. Microbiol.41(5),412–416 (2005).
  • Lima KGD, Takahashi CM, Alterthum F. Ethanol production from corn cob hydrolysates by Escherichia coli ko11. J. Ind. Microbiol. Biotechnol.29(3),124–128 (2002).
  • Okuda N, Ninomiya K, Takao M, Katakura Y, Shioya S. Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli ko11. J. Biosci. Bioeng.103(4),350–357 (2007).
  • Martin GJO, Bin Zhou AK, Pamment NB. Performance and stability of ethanologenic Escherichia coli strain fbr 5 during continuous culture on xylose and glucose. J. Ind. Microbiol. Biotechnol.33(10),834–844 (2006).
  • Zhou B, Martin GJO, Pamment NB. Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli ko11 when immobilized in continuous fluidized bed culture. Biotechnol. Bioeng.100(4),627–633 (2008).
  • Qureshi N, Dien BS, Nichols NN, Saha BC, Cotta MA. Genetically engineered Escherichia coli for ethanol production from xylose – substrate and product inhibition and kinetic parameters. Food Bioprod. Process.84(C2),114–122 (2006).
  • Da Silva GP, Araujo EF, Silva DO, Guimaraes WV. Ethanolic fermentation of sucrose, sugarcane juice and molasses by Escherichia coli strain ko11 and Klebsiella oxytoca strain p2. Braz. J. Microbiol.36(4),395–404 (2005).
  • Dos Santos VL, Araujo EF, De Barros EG, Guimaraes WV. Fermentation of starch by Klebsiella oxytoca p2, containing plasmids with α-amylase and pullulanase genes. Biotechnol. Bioeng.65(6),673–676 (1999).
  • Hild HM, Stuckey DC, Leak DJ. Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus jw200 fe(7). Appl. Microbiol. Biotechnol.60(6),679–686 (2003).
  • Klinke HB, Thomsen AB, Ahring BK. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl. Microbiol. Biotechnol.57(5–6),631–638 (2001).
  • He Q, Lokken PM, Chen S, Zhou JZ. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresour. Technol.100(23),5955–5965 (2009).
  • Chinn MS, Nokes SE, Strobel HJ. Influence of process conditions on end product formation from Clostridium thermocellum 27405 in solid substrate cultivation on paper pulp sludge. Bioresour. Technol.98(11),2184–2193 (2007).
  • Balusu R, Paduru RR, Kuravi SK, Seenayya G, Reddy G. Optimization of critical medium components using response surface methodology for ethanol production from cellulosic biomass by Clostridium thermocellum ss19. Process Biochem.40(9),3025–3030 (2005).
  • Balusu R, Paduru RMR, Seenayya G, Reddy G. Production of ethanol from cellulosic biomass by Clostridium thermocellum ss19 in submerged fermentation – screening of nutrients using plackett-burman design. Appl. Biochem. Biotechnol.117(3),133–141 (2004).
  • Islam R, Cicek N, Sparling R, Levin D. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum atcc 27405. Appl. Microbiol. Biotechnol.82(1),141–148 (2009).
  • Olofsson K, Bertilsson M, Liden G. A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks.Biotechnol. Biofuels1, (2008).
  • Kroumov AD, Modenes AN, Tait MCD. Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain. Biochem. Eng. J.28(3),243–255 (2006).
  • Ma HZ, Wang QH, Zhang WY, Xu WL, Zou DX. Optimization of the medium and process parameters for ethanol production from kitchen garbage by Zymomonas mobilis. Int. J. Green Energy5(6),480–490 (2008).
  • Yamashita Y, Kurosumi A, Sasaki C, Nakamura Y. Ethanol production from paper sludge by immobilized Zymomonas mobilis. Biochem. Eng. J.42(3),314–319 (2008).
  • Rebros M, Rosenberg M, Grosova Z, Kristofikova L, Paluch M, Sipocz M. Ethanol production from starch hydrolyzates using Zymomonas mobilis and glucoamylase entrapped in polyvinylalcohol hydrogel. Appl. Biochem. Biotechnol.158(3),561–570 (2009).
  • Golias H, Dumsday GJ, Stanley GA, Pamment NB. Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J. Biotechnol.96(2),155–168 (2002).
  • Golias H, Dumsday GJ, Stanley GA, Pamment NB. Characteristics of cellulase preparations affecting the simultaneous saccharification and fermentation of cellulose to ethanol. Biotechnol. Lett.22(7),617–621 (2000).
  • Teixeira LC, Linden JC, Schroeder HA. Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass. Appl. Biochem. Biotechnol.84–86,111–127 (2000).
  • Kim TH, Lee YY, Sunwoo C, Kim JS. Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl. Biochem. Biotechnol.133(1),41–57 (2006).
  • Lynd LR, Van Zyl WH, Mcbride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol.16(5),577–583 (2005).
  • Hasenwinkle D, Jervis E, Kops O et al. Very high-level production and export in Escherichia coli of a cellulose binding domain for use in a generic secretion-affinity fusion system. Biotechnol. Bioeng.55(6),854–863 (1997).
  • Yanase H, Nozaki K, Okamoto K. Ethanol production from cellulosic materials by genetically engineered Zymomonas mobilis. Biotechnol. Lett.27(4),259–263 (2005).
  • Zhou SD, Davis FC, Ingram LO. Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase cely (CELY) and celz (CELZ) in ethanologenic Klebsiella oxytoca p2. Appl. Environ. Microbiol.67(1),6–14 (2001).
  • Zhou SD, Ingram LO. Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca sz21 without supplemental cellulase. Biotechnol. Lett.23(18),1455–1462 (2001).
  • He MX, Feng H, Bai F, Li Y, Liu X, Zhang YZ. Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. Afr. J. Microbiol. Res.3(11),721–726 (2009).
  • Xu Q, Singh A, Himmel ME. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol.20(3),364–371 (2009).
  • Mohagheghi A, Evans K, Finkelstein M, Zhang M. Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineered Zymomonas mobilis strains. Appl. Biochem. Biotechnol.70–2, 285–299 (1998).
  • Reddy OVS, Basappa SC. Direct fermentation of cassava starch to ethanol by mixed cultures of endomycopsis fibuligera and Zymomonas mobilis: synergism and limitations. Biotechnol. Lett.18(11),1315–1318 (1996).
  • Abate C, Callieri D, Rodriguez E, Garro O. Ethanol production by a mixed culture of flocculent strains of Zymomonas mobilis and Saccharomyces sp. Appl. Microbiol. Biotechnol.45(5),580–583 (1996).
  • Gonzalez C, Delgado O, Baigori M, Abate C, De Figueroa LIC, Callieri DA. Ethanol production from native cassava starch by a mixed culture of Endomycopsis fibuligera and Zymomonas mobilis. Acta Biotechnol.18(2),149–155 (1998).
  • Abate CM, Castro GR, Sineriz F, Callieri DAS. Production of amylolytic enzymes by Bacillus amyloliquefaciens in pure culture and in co-culture with Zymomonas mobilis. Biotechnol. Lett.21(3),249–252 (1999).
  • Szambelan K, Nowak J, Czarnecki Z. Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from jerusalem artichoke tubers. Biotechnol. Lett.26(10),845–848 (2004).
  • Patle S, Lal B. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol. Lett.29(12),1839–1843 (2007).
  • Patle S, Lal B. Investigation of the potential of agro–industrial material as low cost substrate for ethanol production by using Candida tropicalis and Zymomonas mobilis. Biomass Bioenerg.32(7),596–602 (2008).
  • Oyeleke SB, Jibrin NM. Production of bioethanol from guinea cornhusk and millet husk. Afr. J. Microbiol. Res.3(4),147–152 (2009).
  • Fu N, Peiris P, Markham J, Bavor J. A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb. Technol.45(3),210–217 (2009).
  • Meyerhoff J, John G, Bellgardt KH, Schugerl K. Characterization and modelling of coimmobilized aerobic/anaerobic mixed cultures. Chem. Eng. Sci.52(14),2313–2329 (1997).
  • Zhao CX, O-Thong S, Karakashev D, Angelidaki I, Lu WJ, Wang HT. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 degrees C) mixed culture environment. Int. J. Hydrog. Energy34(14),5657–5665 (2009).
  • Qian MY, Tian S, Li XF, Zhang J, Pan YP, Yang XS. Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl. Biochem. Biotechnol.134(3),273–283 (2006).
  • Okuda N, Ninomiya K, Katakura Y, Shioya S. Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae. J. Biosci. Bioeng.105(2),90–96 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.