439
Views
38
CrossRef citations to date
0
Altmetric
Review

Artificial photosynthesis – solar fuels: current status and future prospects

, , , &
Pages 861-876 | Published online: 09 Apr 2014

Bibliography

  • United Nations Development Program. World Energy Assessment Report: Energy and the Challenge of Sustainability. United Nations, NY, USA (2003).
  • Energy and Transportation: Challenges for the Chemical Sciences in the 21st Century. National Academy Press. Washington, DC, USA (2003).
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev.106,4044–4098 (2006).
  • Transportation Fuels from Biomass: An Interesting, but Limited Option. The George C. Marshall Institute, Washington, DC, USA (2006).
  • Zhu XG, Long SP, Ort DR. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotech.19,153–159 (2008).
  • Primary Processes of Photosynthesis. Renger G (Ed.). RSC Publishing, Cambridge, UK (2008).
  • The Purple Phototropic Bacteria. Hunter CN, Daldal F, Thurnauer MC et al. (Eds). Springer, Dordrecht, The Netherlands (2009).
  • Gust D, Moore TA, Moore AL. Mimicking photosynthetic solar energy transduction. Acc. Chem. Res.34,40–48 (2001).
  • Rybtchinski B, Sinks LE, Wasielewski MR. Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores. J. Am. Chem. Soc.126,12268–12269 (2004).
  • Liddell PA, Kodis G, de la Garza L et al. Benzene-templated model systems for photosynthetic antenna-reaction center function. J. Phys. Chem. B.108,10256–10265 (2004).
  • Wagner RW, Johnson TE, Lindsey JS. Soluble synthetic multiporphyrin arrays. 1. Modular design and synthesis. J. Am. Chem. Soc.118,11166–11180 (1996).
  • Martin N, Guldi DM. Fullerens in bio-mimetic donor-acceptor networks. In: Energy Harvesting Materials. Andrews DI (Ed.) World Scientific Publishing Co., Singapore, 335–388 (2005).
  • Portis AR, Parry MAJ. Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosyn. Res.94,121–143 (2007).
  • Barber J, Andersson B. Too much of a good thing – light can be bad for photosynthesis. TIBTECH17,61–66 (1992).
  • Acc. Chem. Res.42 (2009).
  • Light-Harvesting Antennas in Photosynthesis. Green BR, Parson WW (Eds). Kluwer Academic Press, Dordrecht, The Netherlands (2003).
  • Escalante M, Zhao YP, Ludden MJW et al. Nanometer arrays of functional light harvesting antenna complexes by nanoimprint lithography and host–guest interactions. J. Am. Chem. Soc.130,8892–8893 (2008).
  • Moser CC, Page CC, Cogdell RJ et al. Length, time, and energy scales of photosystems. Membrane Proteins63,71–109 (2003).
  • Müller MG, Slavov C, Luthra R et al. Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc. Natl Acad. Sci. USA107,4123–4128 (2010).
  • Gust D, Moore TA, Moore AL. Molecular mimicry of photosynthetic energy and electron transfer. Acc. Chem. Res.26,198–205 (1993).
  • Ferreira KN, Iverson TM, Maghlaoui K et al. Architecture of the photosynthetic oxygen-evolving center. Science303,1831–1838 (2004).
  • Guskov A, Kern J, Gabdulkhakov A, et al.Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat. Struct. Mol. Biol.16,334–342 (2009).
  • Kok B, Forbush B, Mcgloin M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem. Photobiol.11,457–475 (1970).
  • Sala X, Romero I, Rodriguez M et al. Molecular catalysts that oxidize water to dioxygen. Angew. Chem. Int. Ed.48,2842–2852 (2009).
  • Yagi M, Kaneko M. Molecular catalysts for water oxidation. Chem. Rev.101,21–35 (2001).
  • Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev.38,253–278 (2009).
  • Romero I, Rodriguez M, Sens C et al. Ru complexes that can catalytically oxidize water to molecular dioxygen. Inorg. Chem.47,1824–1834 (2008).
  • Yin Q, Tan JM, Besson C et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science328,342–345 (2010).
  • Brimblecombe R, Koo A, Dismukes GC et al. Solar driven water oxidation by a bioinspired manganese molecular catalyst. J. Am. Chem. Soc.132,2892–2894 (2010).
  • Sartorel A, Miro P, Salvadori E et al. Water oxidation at a tetraruthenate core stabilized by polyoxometalate ligands: experimental and computational evidence to trace the competent intermediates. J. Am. Chem. Soc.131,16051–16053 (2009).
  • Sartorel A, Carraro M, Scorrano G et al. Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SIW10O36](8-): a totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc.130,5006–5007 (2008).
  • Geletii YV, Botar B, Koegerler P et al. An all-inorganic, stable, and highly active tetraruthenium homogeneous catalyst for water oxidation. Angew. Chem. Int. Ed.47,3896–3899 (2008).
  • Izarova NV, Vankova N, Heine T et al. Polyoxometalates made of gold: the polyoxoaurate [(Au4As4O20)-As-III-O-V]8-. Angew. Chem. Int. Ed.49,1886–1889 (2010).
  • Chubarova EV, Dickman MH, Keita B et al. Self-assembly of a heteropolyoxopalladate nanocube: [(Pd13As8O34)-As-II-O-V(OH)6]8-. Angew. Chem. Int. Ed.47,9542–9546 (2008).
  • Hill CL. Introduction: polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems. Chem. Rev.98,1–2 (1998).
  • Long D-L, Tsunashima R, Cronin L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed.49,1736–1758 (2010).
  • Long D-L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. Chem. Soc. Rev.36,105–121 (2007).
  • Baker LCW, Glick DC. Present general status of understanding of heteropoly electrolytes and a tracing of some major highlights in the history of their elucidation. Chem. Rev.98,3–49 (1998).
  • Canny J, Teze A, Thouvenot R et al. Disubstituted tungstosilicates. 1. Synthesis, stability, and structure of the lacunary precursor polyanion Γ-Siw10o368-. Inorg. Chem.25,2114–2119 (1986).
  • Ritchie C, Streb C, Thiel J et al. Reversible redox reactions in an extended polyoxometalate framework solid. Angew. Chem. Int. Ed.47,6881–6884 (2008).
  • Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science321,1072–1075 (2008).
  • Vignais PM, Colbeau A, Willison JC et al. Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv. Microbiol. Physiol.26,155–234 (1985).
  • Sasikala K, Ramana CV, Raghuveer Rao P et al. Anoxygenic phototrophic bacteria: physiology and advances in hydrogen production technology. Adv. Appl. Microbiol.211–295 (1993).
  • Shima S, Pilak O, Vogt S et al. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science321,572–575 (2008).
  • Garcin E, Vernede X, Hatchikian EC et al. The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure7,557–566 (1999).
  • Fontecilla-Camps JC, Volbeda A, Cavazza C et al. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev.107,4273–4303 (2007).
  • Masepohl B, Kranz RG. Regulation of Nitrogen fixation. In: The Purple Phototrophic Bacteria. Hunter CN, Daldal F, Thurnauer MC et al. (Eds). 759–775 Springer, Dordrecht, The Netherlands (2009).
  • Parkinson BA, Weaver PF. Photoelectrochemical pumping of enzymatic CO2 reduction. Nature309,148–149 (1984).
  • Obert R, Dave BC. Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. J. Am. Chem. Soc.121,12192–12193 (1999).
  • Reda T, Plugge CM, Abram NJ et al. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl Acad. Sci. USA105,10654–10658 (2008).
  • Wendell D, Todd J, Montemagno C. Artificial photosynthesis in ranaspumin-2 based foam. Nano Lett.10(9),3231–3236 (2010).
  • Prince SM, Papiz MZ, Freer AA et al. Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein pigment interactions. J. Mol. Biol.268,412–423 (1997).
  • Hofmann E, Wrench PM, Sharples FP et al. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Science272,1788–1791 (1996).
  • Tronrud DE, Wen JZ, Gay L et al. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosyn. Res.100,79–87 (2009).
  • Standfuss R, van Scheltinga ACT, Lamborghini M et al. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5A resolution. EMBO J.24,919–928 (2005).
  • Cogdell RJ, Lindsay JG. Can photosynthesis provide a ‘biological blueprint’ for the design of novel solar cells? Trends Biotechnol.16,521–527 (1998).
  • Schenning APHJ, Peeters E, Meijer EW. Energy transfer in supramolecular assemblies of oligo(p-phenylene vinylene)s terminated poly(propylene imine) dendrimers. J. Am. Chem. Soc.122,4489–4495 (2000).
  • Lancaster CRD, Michel H. The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centers from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, Q(B). Structure5,1339–1359 (1997).
  • Jordan P, Fromme P, Witt HT et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature411,909–917 (2001).
  • Loll B, Kern J, Saenger W et al. Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature438,1040–1044 (2005).
  • Bullock JE, Carmieli R, Mickley SM et al. Photoinitiated charge transport through pi-stacked electron conduits in supramolecular ordered assemblies of donor-acceptor triads. J. Am. Chem. Soc.131,11919–11929 (2009).
  • Siegbahn PEM. An energetic comparison of different models for the oxygen evolving complex of photosystem II. J. Am. Chem. Soc.131,18238–18239 (2009).
  • Gersten SW, Samuels GJ, Meyer TJ. Catalytic-oxidation of water by an oxo-bridged ruthenium dimer. J. Am. Chem. Soc.104,4029–4030 (1982).
  • Sens C, Romero I, Rodriguez M et al. A new Ru complex capable of catalytically oxidizing water to molecular dioxygen. J. Am. Chem. Soc.126,7798–7799 (2004).
  • Zong R, Thummel RP. A new family of Ru complexes for water oxidation. J. Am. Chem. Soc.127,12802–12803 (2005).
  • McDaniel ND, Coughlin FJ, Tinker LL et al. Cyclometalated iridium(III) aquo complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J. Am. Chem. Soc.130,210–217 (2007).
  • Hull JF, Balcells D, Blakemore JD et al. Highly active and robust Cp* iridium complexes for catalytic water oxidation. J. Am. Chem. Soc.131,8730–8731 (2009).
  • Besson C, Huang Z, Geletii YV et al. Cs9[([γ]-PW10O36)2Ru4O5(OH)(H2O)4], a new all-inorganic, soluble catalyst for the efficient visible-light-driven oxidation of water. Chem. Commun.46,2784–2786 (2010).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.