95
Views
3
CrossRef citations to date
0
Altmetric
Review

Biocatalytic generation of power from biofuels: biofuel cells

&
Pages 479-492 | Published online: 09 Apr 2014

Bibliography

  • Wang P, Jia H. Power-generation from biorenewable resources: biocatalysis in biofuel cells. In: Bioprocessing for Value-Added Products from Renewable Resources. Yang St (Ed.). Elsevier, NY, USA 507–525 (2007).
  • Potter MC. Electrical effects accompanying the decomposition of organic compounds. Proc. Roy. Soc.84,260–276 (1912).
  • Cohen B. The bacterial culture as an electrical half-cell. J. Bacteriol.21,18–19 (1931).
  • Duca MGD, Fuscoe JM, Zurilla RW. Direct and indirect bioelectrochemical energy conversion systems. Develop. Ind. Microbiol.4,81–91 (1963).
  • Hees WV. A bacterial methane fuel cell. J. Electrochem. Soc.112(3),258–262 (1965).
  • Yahiro AT, Lee SM, Kimble DO. Bioelectrochemistry: I. Enzyme utilizing biofuel cell studies. Biochim. Biophys. Acta88(2),375–383 (1964).
  • Bockris JOM, Srinivasan S. Fuel cells: their electrochemistry. McGraw-Hill, NY, USA (1969).
  • Palmore GTR, Whitesides GM. Microbial and enzymic biofuel cells. ACS Symp. Ser.566,271–290 (1994).
  • Aston WJ, Turner APF, Biosensors and biofuel cells. Biotechnol. Genet. Eng.1,89–120 (1984).
  • Govil G, Saran A. Biochemical fuel cells. J. Indian Chem. Soc.59(11–12),1226–1228 (1982).
  • Minteer SD, Liaw BY, Cooney MJ. Enzyme-based biofuel cells. Curr. Opin. Biotechnol.18(3),228–234 (2007).
  • Atanassov P, Apblett C, Banta S et al. Enzymatic biofuel cells. Electrochem. Soc. Interface16(2),28–31 (2007).
  • Cooney MJ, Svoboda V, Lau C, Martin G, Minteer SD. Enzyme catalysed biofuel cells. Energy Environ. Sci.1(3),320–337 (2008).
  • Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol.23(6),291–298 (2005).
  • Logan BE, Regan JM. Microbial fuel cells – challenges and applications. Environ. Sci. Technol.40(17),5172–5180 (2006).
  • Noll K. Microbial fuel cells. In: Fuel Cell Technology. Springer, Berlin, Germany (2006).
  • Lovley DR. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol.19(6),564–571 (2008).
  • Katz E, Willner I. Biofuel cells based on monolayer-functionalized biocatalytic electrodes. In: Advanced Macromolecular and Supramolecular Materials and Processes. Geckeler Ke (Ed.). Kluwer Academic/Plenum Publishers, NY, USA, 175–196 (2003).
  • Heller A. Miniature biofuel cells. Phys. Chem. Chem. Phys.6(2),209–216 (2004).
  • Barton SC, Gallaway J, Atanassov P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev.104(10),4867–4886 (2004).
  • Logan BE. Extracting hydrogen and electricity from renewable resources. Environ. Sci. Technol.38(9),160A–167A (2004).
  • Rozendal RA, Hamelers HVM, Rabaey K, Keller J, Buisman CJN. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol.26(8),450–459 (2008).
  • Schroeder U. From wastewater to hydrogen: biorefineries based on microbial fuel-cell technology. ChemSusChem1(4),281–282 (2008).
  • Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv.25(5),464–482 (2007).
  • Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv.24(3),296–308 (2006).
  • Fishilevich S, Amir L, Fridman Y, Aharoni A, Alfonta L. Surface display of redox enzymes in microbial fuel cells. J. Am. Chem. Soc.131(34),12052–12053 (2009).
  • Schaetzle O, Barriere F, Schroder U. An improved microbial fuel cell with laccase as the oxygen reduction catalyst. Energy Environ. Sci.2(1),96–99 (2009).
  • Arechederra RL, Boehm K, Minteer SD. Mitochondrial bio-electrocatalysis for biofuel cell applications. Electrochim. Acta54(28),7268–7273 (2009).
  • Sokic-Lazic D, Minteer SD. Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem. Solid-State Lett.12(9),F26–F28 (2009).
  • Germain MN, Arechederra RL, Minteer SD. Nitroaromatic actuation of mitochondrial bioelectrocatalysis for self-powered explosive sensors. J. Am. Chem. Soc.130(46),15272–15273 (2008).
  • Arechederra R, Minteer SD. Organelle-based biofuel cells: immobilized mitochondria on carbon paper electrodes. Electrochim. Acta53(23),6698–6703 (2008).
  • Palmore GTR. Bioelectric power generation. Trends Biotechnol.22(3),99–100 (2004).
  • Schroeder U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys.9(21),2619–2629 (2007).
  • Schaetzle O, Barriere F, Baronian K. Bacteria and yeasts as catalysts in microbial fuel cells: electron transfer from micro-organisms to electrodes for green electricity. Energy Environ. Sci.1(6),607–620 (2008).
  • Ghindilis AL, Atanasov P, Wilkins E. Enzyme-catalyzed direct electron transfer: fundamentals and analytical applications. Electroanal.9(9),661–674 (1997).
  • Varfolomeev SD, Kurochkin IN, Yaropolov AI. Direct electron transfer effect biosensors. Biosens. Bioelectron.11(9),863–871 (1996).
  • Freire RS, Pessoa CA, Mello LD, Kubota LT. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity. J. Braz. Chem. Soc.14(2),230–243 (2003).
  • Schuhmann W. Amperometric enzyme biosensors based on optimized electron-transfer pathways and non-manual immobilization procedures. Rev. Mol. Biotechnol.82(4),425–441 (2002).
  • Guiseppi-Elie A, Lei C, Baughman RH. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology13(5),559–564 (2002).
  • Zhao Y-D, Zhang W-D, Chen H, Luo Q-M. Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode. Anal. Sci.18(8),939–941 (2002).
  • Cai C, Chen J. Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal. Biochem.332(1),75–83 (2004).
  • Willner I, Heleg-Shabtai V, Blonder R et al. Electrical wiring of glucose oxidase by reconstitution of fad-modified monolayers assembled onto Au-electrodes. J. Am. Chem. Soc.118(42),10321–10322 (1996).
  • Lewis K. Biochemical fuel cells. Bacteriol. Rev.30(1),101–113 (1966).
  • Katz E, Shipway NA, Willne I. Biochemical fuel cells. In: Handbook of Fuel Cells – Fundamentals Technology and Applications. Vielstich W, Lamm A, Gasteiger HA (Eds). John Wiley and Sons Ltd, Chichester, UK, 355–381 (2003).
  • Sandstede G, Cairns EJ, Bagotsky VS, Weisener K. History of low temperature fuel cells. In: Handbook of Fuel Cells – Fundamentals Technology and Applications. Vielstich W, Lamm A, Gasteiger Ha (Eds). John Wiley and Sons Ltd, Chichester, UK, 145–218 (2003).
  • Karyakin AA, Morozov SV, Karyakina EE, Varfolomeyev SD, Zorin NA, Cosnier S. Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase. Electrochem. Commun.4(5),417–420 (2002).
  • Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol.21(10),1229–1232 (2003).
  • Rabaey K, Lissens G, Siciliano SD, Verstraete W. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett.25(18),1531–1535 (2003).
  • Bennetto HP, Delaney GM, Mason JR, Roller SD, Stirling JL, Thurston CF. The sucrose fuel cell: efficient biomass conversion using a microbial catalyst. Biotechnol. Lett.7(10),699–704 (1985).
  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol.22(9),477–485 (2004).
  • Suzuki S, Karube I, Matsuoka H et al. Biochemical energy conversion by immobilized whole cells. Ann. NY Acad. Sci.413(3),133–143 (1983).
  • Palmore GTR, Bertschy H, Bergens SH, Whitesides GM. A methanol/dioxygen biofuel cell that uses NAD+-dependent dehydrogenases as catalysts: application of an electro-enzymic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem.443(1),155–161 (1998).
  • Sokic-Lazic D, Minteer SD. Citric acid cycle biomimic on a carbon electrode. Biosens. Bioelectron.24(4),939–944 (2008).
  • Arechederra RL, Minteer SD. Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells9(1),63–69 (2009).
  • Arechederra RL, Treu BL, Minteer SD. Development of glycerol/O2 biofuel cell. J. Power Sources173(1),156–161 (2007).
  • Williams KR. An Introduction to Fuel Cells. Elsevier, NY, USA (1966).
  • Habermann W, Pommer EH. Biological fuel cells with sulfide storage capacity. Appl. Microbiol. Biotechnol.35(1),128–133 (1991).
  • Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol.38(7),2281–2285 (2004).
  • Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol.38(14),4040–4046 (2004).
  • Park DH, Zeikus JG. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng.81(3),348–355 (2003).
  • Park HS, Kim BH, Kim Hs et al. A novel electrochemically active and Fe(iii)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe7(6),297–306 (2001).
  • Pham CA, Jung SJ, Phung Nt et al. A novel electrochemically active and Fe(iii)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol. Lett.223(1),129–134 (2003).
  • Gil G-C, Chang I-S, Kim Bh et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron.18(4),327–334 (2003).
  • Reimers CE, Tender LM, Fertig S, Wang W. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol.35(1),192–195 (2001).
  • Bond DR, Holmes DE, Tender LM, Lovley DR. Electrode-reducing microorganisms that harvest energy from marine sediments. Science295(5554),483–485 (2002).
  • Tender LM, Reimers CE, Stecher HA et al. Harnessing microbially generated power on the seafloor. Nat. Biotechnol.20(8),821–825 (2002).
  • Tsujimura S, Wadano A, Kano K, Ikeda T. Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme Microb. Technol.29(4–5),225–231 (2001).
  • Ghindilis A. Direct electron transfer catalyzed by enzymes: application for biosensor development. Biochem. Soc. Trans.28(2),84–89 (2000).
  • Durliat H, Comtat M. Reagentless amperometric lactate electrode. Anal. Chem.52(13),2109–2112 (1980).
  • Yaropolov AI, Malovik V, Varfolomeev SD, Berezin IV. Electroreduction of hydrogen peroxide on an electrode with immobilized peroxidase. Dokl. Akad. Nauk SSSR249(6),1399–1401 (1979).
  • Varfolomeev SD, Berezin IV. Enzymes as catalysts of electrochemical reactions. J. Mol. Catal.4(6),387–399 (1978).
  • Berezin IV, Bogdanovskaya VA, Varfolomeev SD, Tarasevich MR, Yaropolov AI. Bioelectrocatalysis. Equilibrium oxygen potential in the presence of laccase. Dokl. Akad. Nauk SSSR240(3),615–618 (1978).
  • Lojou E, Luo X, Brugna M, Candoni N, Dementin S, Giudici-Orticoni MT. Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. J. Biol. Inorg. Chem.13(7),1157–1167 (2008).
  • Cuendet P, Graetzel M, Rao KK, Hall DO. Immobilized enzymes on semiconducting powder: photogeneration of hydrogen by titanium dioxide and cadmium sulfide bound hydrogenases. Photobiochem. Photobiophys.7(5–6),331–340 (1984).
  • Schlereth DD, Fernandez VM, Sanchez-Cruz M, Popov VO. Direct electron transfer between Alcaligenes eutrophus z-1 hydrogenase and glassy carbon electrodes. Bioelectrochem. Bioenerg.28(3),473–482 (1992).
  • Ruediger O, Abad JM, Hatchikian EC, Fernandez VM, De Lacey AL. Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of h2. J. Am. Chem. Soc.127(46),16008–16009 (2005).
  • Ivnitski D, Artyushkova K, Rincon RA, Atanassov P, Luckarift HR, Johnson GR. Entrapment of enzymes and carbon nanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer. Small4(3),357–364 (2008).
  • Wen ZH, Ye BX, Zhou XY. Direct electron transfer reaction of glucose oxidase at bare silver electrodes and its application in analysis. Electroanalysis9(8),641–644 (1997).
  • Ianniello RM, Lindsay TJ, Yacynych AM. Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes. Anal. Chem.54(7),1098–1101 (1982).
  • Gupta G, Rajendran V, Atanassov P. Bioelectrocatalysis of oxygen reduction reaction by laccase on gold electrodes. Electroanalysis16(13–14),1182–1185 (2004).
  • Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L. Direct electrochemistry of multi-copper oxidases at carbon nanotubes noncovalently functionalized with cellulose derivatives. Electroanalysis18(6),587–594 (2006).
  • Ramirez P, Mano N, Andreu R et al. Direct electron transfer from graphite and functionalized gold electrodes to t1 and t2/t3 copper centers of bilirubin oxidase. Biochim. Biophys. Acta, Bioenerg.1777(10),1364–1369 (2008).
  • Tsujimura S, Nakagawa T, Kano K, Ikeda T. Kinetic study of direct bioelectrocatalysis of dioxygen reduction with bilirubin oxidase at carbon electrodes. Electrochemistry (Tokyo, Japan)72(6),437–439 (2004).
  • Wang M, Shen Y, Liu Y et al. Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. J. Electroanal. Chem.578(1),121–127 (2005).
  • Atanassov P. Laccase-catalyzed direct electron transfer: application in biofuel cell cathode. Presented at: 223rd ACS National Meeting, Orlando, FL, USA, 7–11 April 2002.
  • Atanassov P, Colon F, Rajendran V. Glucose–air enzymatic bio-fuel cell. Presented at: 228th ACS National Meeting, PA, USA, 22–26 August 2004.
  • Morozov SV, Karyakina EE, Zorin NA, Varfolomeyev SD, Cosnier S, Karyakin AA. Direct and electrically wired bioelectrocatalysis by hydrogenase from Thiocapsa roseopersicina. Bioelectrochemistry55(1–2),169–171 (2002).
  • Tarasevich MR, Bogdanovskaya VA, Zagudaeva NM, Kapustin AV. Composite materials for direct bioelectrocatalysis of the hydrogen and oxygen reactions in biofuel cells. Russ. J. Electrochem.38(3),335 (2002).
  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense. Enzyme Microb.30(2),145–152 (2002).
  • Kim BH, Chang IS, Gil GC, Park HS, Kim HJ. Novel bod (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett.25(7),541–545 (2003).
  • Kang KH, Jang JK, Pham TH, Moon H, Chang IS, Kim BH. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett.25(16),1357–1361 (2003).
  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16s rdna sequences. FEMS Microbiol. Lett.233(1),77–82 (2004).
  • Kim BH, Park HS, Kim Hj et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol.63(6),672–681 (2004).
  • Chang IS, Jang JK, Gil Gc et al. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron.19(6),607–613 (2004).
  • Kim BH, Ikeda T, Park HS et al. Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol. Tech.13(7),475–478 (1999).
  • Nevin KP, Richter H, Covalla SF et al. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ. Microbiol.10(10),2505–2514 (2008).
  • Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol.72(11),7345–7348 (2006).
  • Reguera G, Mccarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR. Extracellular electron transfer via microbial nanowires. Nature435(7045),1098–1101 (2005).
  • Gorby YA, Yanina S, Mclean Js et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA103(30),11358–11363 (2006).
  • Richter H, Nevin KP, Jia HF, Lowy DA, Lovley DR, Tender LM. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OMCB, OMCZ, Type IV pili and protons in extracellular electron transfer. Energy Environ.Sci. 2(5),506–516 (2009).
  • Lee JY, Phung NT, Chang IS, Kim BH, Sung HC. Use of acetate for enrichment of electrochemically active microorganisms and their 16s rDNA analyses. FEMS Microbiol. Lett.223(2),185–191 (2003).
  • Rabaey K, Keller J. Microbial fuel cell cathodes: from bottleneck to prime opportunity? Water Sci. Technol.57(5),655–659 (2008).
  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH. Cathodic limitations in microbial fuel cells: an overview. J. Power Sources180(2),683–694 (2008).
  • Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol.38(18),4900–4904 (2004).
  • Schroder U, Niessen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed.42(25),2880–2883 (2003).
  • Chang IS, Moon H, Bretschger O et al. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol.16(2),163–177 (2006).
  • Jeffrey AG, Dianne KN. Extracellular respiration. Mol. Microbiol.65(1),1–11 (2007).
  • Stams AJM, De Bok FAM, Plugge CM, Van Eekert MHA, Dolfing J, Schraa G. Exocellular electron transfer in anaerobic microbial communities. Environ. Microbiol.8(3),371–382 (2006).
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol.7(5),375–381 (2009).
  • Ikeda T, Kano K. Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochim. Biophys. Acta1647(1–2),121–126 (2003).
  • Shukla AK, Suresh P, Berchmans S, Rajendran A. Biological fuel cells and their applications. Curr. Sci.87(4),455–468 (2004).
  • Wong TS, Schwaneberg U. Protein engineering in bioelectrocatalysis. Curr. Opin. Biotechnol.14(6),590–596 (2003).
  • Habermuller K, Mosbach M, Schuhmann W. Electron-transfer mechanisms in amperometric biosensors. Fresen. J. Anal. Chem.366(6–7),560–568 (2000).
  • Leonida MD. Redox enzymes used in chiral syntheses coupled to coenzyme regeneration. Curr. Med. Chem.8(4),345–369 (2001).
  • Abel PU, Von Woedtke T. Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosens. Bioelectron.17(11–12),1059–1070 (2002).
  • Ikeda T, Kano K. An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells. J. Biosci. Bioeng.92(1),9–18 (2001).
  • Kano K, Ikeda T. Fundamentals and practices of mediated bioelectrocatalysis. Anal. Sci.16(10),1013–1021 (2000).
  • Stoecker PW, Yacynych AM. Mediated amperometric biosensors. Bull. Electrochem.8(4),181–185 (1992).
  • Calvo EJ, Danilowicz C. Amperometric enzyme electrodes. J. Braz. Chem. Soc.8(6),563–574 (1997).
  • White SF, Turner APF, Enzymes, cofactors, and mediators. In: Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment. Kress-Rogers E (Ed.). CRC Press, Boca Raton, FL, USA 43–57 (1997).
  • Duine JA. The importance of natural diversity in redox proteins for achieving cofactor-electrode-directed electron transfer. Biosens. Bioelectron.10(1/2),17–23 (1995).
  • Tsujimura S, Fujita M, Tatsumi H, Kano K, Ikeda T. Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Phys. Chem. Chem. Phys.3(7),1331–1335 (2001).
  • Tanaka K, Vega CA, Tamamushi R. Thionine and ferric chelate compounds as coupled mediators in microbial fuel cells. Bioelectrochem. Bioenerg.11(4–6),289–297 (1983).
  • Moiroux J, Elving PJ. Effects of adsorption, electrode material and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes. Anal. Chem.50(8),1056–1062 (1978).
  • Jaegfeldt H. Adsorption and electrochemical oxidation behavior of nadh at a clean platinum electrode. J. Electroanal. Chem. Interfacial Electrochem.110(1–3),295–302 (1980).
  • Franks AE, Nevin KP, Jia H, Izallalen M, Woodard TL, Lovley DR. Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm. Energy Environ. Sci.2(1),113–119 (2009).
  • Park DH, Kim BH, Moore B, Hill HAO, Song MK, Rhee HW. Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol. Tech.11(3),145–148 (1997).
  • Colon F, Rajendran V, Atanassov P. Development of a glucose-air biofuel cell. Presented at: 206th ECS Meeting, Honolulu, Hawaii, USA, 3–8 October 2004.
  • Yaropolov AI, Sukhomlin TK, Karyakin AA, Varfolomeev SD, Berezin IV. Possibility of electron tunneling transfer during enzymic catalysis of electrode processes. Dokl. Akad. Nauk SSSR260(5),1192–1195 (1981).
  • Kulys JJ, Samalius AS. Dependence of the efficiency of bioelectrocatalytic processes on the electrode surface-state. Bioeletrochem. Bioenerg.13(1–3),163–169 (1984).
  • Pizzariello A, Stred’ansky M, Miertus S. A glucose/hydrogen peroxide biofuel cell that uses oxidase and peroxidase as catalysts by composite bulk-modified bioelectrodes based on a solid binding matrix. Bioelectrochem.56(1–2),99–105 (2002).
  • Moore CM, Akers NL, Hill AD, Johnson ZC, Minteer SD. Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides. Biomacromolecules5(4),1241–1247 (2004).
  • Akers NL, Moore CM, Minteer SD. Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/nafion membranes to immobilize dehydrogenase enzymes. Electrochim. Acta50(12),2521–2525 (2005).
  • Mano N, Mao F, Heller A. A miniature biofuel cell operating in a physiological buffer. J. Am. Chem. Soc.124(44),12962–12963 (2002).
  • Mano N, Mao F, Shin W, Chen T, Heller A. A miniature biofuel cell operating at 0.78 V. Chem. Commun. (4),518–519 (2003).
  • Chen T, Barton SC, Binyamin G et al. A miniature biofuel cell. J. Am. Chem. Soc.123(35),8630–8631 (2001).
  • Mano N, Mao F, Heller A. Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant. J. Am. Chem. Soc.125(21),6588–6594 (2003).
  • Soukharev V, Mano N, Heller A. A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 v. J. Am. Chem. Soc.126(27),8368–8369 (2004).
  • Katz E, Willner I, Kotlyar AB. A non-compartmentalized glucose O2 biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem.479(1),64–68 (1999).
  • Katz E, Willner I. A biofuel cell with electrochemically switchable and tunable power output. J. Am. Chem. Soc.125(22),6803–6813 (2003).
  • Willner I, Katz E, Patolsky F, Buckmann AF. Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. J. Chem. Soc. Perkin Trans.2(8),1817–1822 (1998).
  • Katz E, Filanovsky B, Willner I. A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New J. Chem.23(5),481–487 (1999).
  • Katz E, Bueckman AF, Willner I. Self-powered enzyme-based biosensors. J. Am. Chem. Soc.123(43),10752–10753 (2001).
  • Willner I, Arad G, Katz E. A biofuel cell based on pyrroloquinoline quinone and microperoxidase-11 monolayer-functionalized electrodes. Bioelectrochem. Bioenerg.44(2),209–214 (1998).
  • Katz E, Heleg-Shabtai V, Bardea A, Willner I, Rau HK, Haehnel W. Fully integrated biocatalytic electrodes based on bioaffinity interactions. Biosens. Bioelectron.13(7–8),741–756 (1998).
  • Bardea A, Katz E, Bueckmann AF, Willner I. NAD+-dependent enzyme electrodes: electrical contact of cofactor-dependent enzymes and electrodes. J. Am. Chem. Soc.119(39),9114–9119 (1997).
  • Blonder R, Willner I, Bueckmann AF. Reconstitution of Apo-glucose oxidase on nitrospiropyran and fad mixed monolayers on gold electrodes: photostimulation of bioelectrocatalytic features of the biocatalyst. J. Am. Chem. Soc.120(36),9335–9341 (1998).
  • Katz E, Sheeney-Haj-Ichia L, Willner I. Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew. Chem. Int. Ed.43(25),3292–3300 (2004).
  • Patolsky F, Tao G, Katz E, Willner I. C60-mediated bioelectrocatalyzed oxidation of glucose with glucose oxidase. J. Electroanal. Chem.454(1–2),9–13 (1998).
  • Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I. ‘Plugging into enzymes’: Nanowiring of redox enzymes by a gold nanoparticle. Science299(5614),1877–1881 (2003).
  • Allen RM, Bennetto HP. Microbial fuel-cells: electricity production from carbohydrates. Appl. Biochem. Biotechnol.39–40, 27–40 (1993).
  • Kang C, Shin H, Zhang Y, Heller A. Deactivation of bilirubin oxidase by a product of the reaction of urate and O2. Bioelectrochem.65(1),83–88 (2004).
  • Winder R. Alcoholic fuel. Chem. Ind. (17),15–18 (2003).
  • Niessen J, Schroder U, Scholz F. Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch. Electrochem. Commun.6(9),955–958 (2004).
  • Niessen J, Schroder U, Rosenbaum M, Scholz F. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells. Electrochem. Commun.6(6),571–575 (2004).
  • Narayanan SR, Valdez TI. Portable direct methanol fuel cell system. In: Handbook of Fuel Cells – Fundamentals Technology and Applications. Vielstich W, Lamm A, Gasteiger HA (Eds). John Wiley and Sons Ltd, Chichester, UK, 1133–1141 (2003).
  • Obert R, Dave BC. Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol-gel matrices. J. Am. Chem. Soc.121(51),12192–12193 (1999).
  • Minteer SD, Akers NL, Moore CM. Enzyme immobilization for use in biofuel cells and sensors. US7638228 (2009).
  • Arning MD, Treu BL, Minteer SD. Citric acid cycle biomimic in an ammonium salt modified nafion membrane for fuel cell applications. Polym. Mater. Sci. Eng.90,566–569 (2004).
  • Fedorovich V, Varfolomeev SD, Sizov A, Goryanin I. Multi-electrode microbial fuel cell with horizontal liquid flow. Water Sci. Technol.60(2),347–355 (2009).
  • De La Garza L, Jeong G, Liddell Pa et al. Enzyme-based photoelectrochemical biofuel cell. J. Phys. Chem. B107(37),10252–10260 (2003).
  • Islam MK, Ohashi T, Yasukawa T et al. Use of quinone as a mediator at anode in a glucose /O2 biofuel cell. Chemical Sensors20(Suppl. B),744–745 (2004).
  • Yagishita T, Sawayama S, Tsukahara K-I, Ogi T. Behavior of glucose degradation in Synechocystis sp. M-203 in bioelectrochemical fuel cells. Bioelectrochem. Bioenerg.43(1),177–180 (1997).
  • Kim N, Choi Y, Jung S, Kim S. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng.70(1),109–114 (2000).
  • Huang L, Logan BE. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells. Appl. Microbiol. Biotechnol.80(4),655–664 (2008).
  • Huang L, Zeng RJ, Angelidaki I. Electricity production from xylose using a mediator less microbial fuel cell. Bioresour. Technol.99(10),4178–4184 (2008).
  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE. Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol.75(11),3673–3678 (2009).
  • Ren Z, Steinberg LM, Regan JM. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci. Technol.58(3),617–622 (2008).
  • Rismani-Yazdi H, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng.97(6),1398–1407 (2007).
  • Kerr JL, Minteer SD. Soybean oil biofuel cell: Utilizing lipoxygenase immobilized by modified nafion to catalyze the oxidation of fatty acids for biofuel cells. ACS Symp. Ser.986,334–353 (2008).
  • Simon E, Halliwell CM, Toh CS, Cass AEG, Bartlett PN. Immobilisation of enzymes on poly(aniline)-poly(anion) composite films. Preparation of bioanodes for biofuel cell applications. Bioelectrochem.55(1–2),13–15 (2002).
  • Biffinger JC, Ray R, Little Bj et al. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol. Bioeng.103(3),524–531 (2009).
  • Biffinger J, Ribbens M, Ringeisen B, Pietron J, Finkel S, Nealson K. Characterization of electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. Biotechnol. Bioeng.102(2),436–444 (2009).
  • Tront JM, Fortner JD, Ploetze M, Hughes JB, Puzrin AM. Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol. Lett.30(8),1385–1390 (2008).
  • Park DH, Kim SK, Shin IH, Jeong YJ. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotechnol. Lett.22(16),1301–1304 (2000).
  • Srikanth S, Marsili E, Flickinger MC, Bond DR. Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnol. Bioeng.99(5),1065–1073 (2008).
  • Borole AP, Hamilton CY, Vishnivetskaya T, Leak D, Andras C. Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochem. Eng. J.48(1),71–80 (2009).
  • Cooney MJ, Roschi E, Marison IW, Comninellis C, Von Stockar U. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell. Enzyme Microb. Technol.18(5),358–365 (1996).
  • Jong BC, Kim BH, Chang IS, Liew PWY, Choo YF, Kang GS. Enrichment, performance and microbial diversity of a thermophilic mediatorless microbial fuel cell. Environ. Sci. Technol.40(20),6449–6454 (2006).
  • Yagishita T, Sawayama S, Tsukahara K, Ogi T. Photosynthetic biofuel cells using cyanobacteria. Renewable Energy9(1–4),958–961 (1996).
  • Yagishita T, Sawayama S, Tsukahara KI, Ogi T. Effects of intensity of incident light and concentrations of Synechococcus sp. And 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell. Sol. Energy61(5),347–353 (1997).
  • Yagishita T, Sawayama S, Tsukahara K, Ogi T. Effects of glucose addition and light on current outputs in photosynthetic electrochemical cells using Synechocystis sp pcc6714. J. Biosci. Bioeng.88(2),210–214 (1999).
  • Kim HH, Mano N, Zhang XC, Heller A. A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J. Electrochem. Soc.150(2),A209–A213 (2003).
  • Gao F, Courjean O, Mano N. An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification. Biosens. Bioelectron.25(2),356–361 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.