148
Views
3
CrossRef citations to date
0
Altmetric
Special Report

Artificial photosynthesis processes as a means of producing biofuels

Pages 855-860 | Published online: 09 Apr 2014

Bibliography

  • Chow WS, Melis A, Anderson JM. Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis. Proc. Natl Acad. Sci. USA87(19),7502–7506 (1990).
  • Gust D, Moore TA, Moore AL. Solar fuels via artificial photosynthesis. Acc. Chem. Res.42(12),1890–1898 (2009).
  • LaVan DA, Cha JN. Approaches for biological and biomimetic energy conversion. Proc. Natl Acad. Sci. USA103(14),5251–5255 (2006).
  • Ragauskas AJ, Williams CK, Davison BH et al. The path forward for biofuels and biomaterials. Science311(5760),484–489 (2006).
  • Lutterman DA, Surendranath Y, Nocera DG. A self-healing oxygen-evolving catalyst. J. Am.Chem. Soc.131(11),3838–3839 (2009).
  • Yin Q, Tan JM, Besson C et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science328(5976),342–345 (2010).
  • Kanan MW, Surendranath Y, Nocera DG. Cobalt–phosphate oxygen-evolving compound. Chem. Soc. Rev.38(1),109–114 (2009).
  • Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and CO2+. Science321(5892),1072–1075 (2008).
  • Hurst JK. In pursuit of water oxidation catalysts for solar fuel production. Science328(5976),315–316 (2010).
  • Cheekatamarla PK, Finnerty CM. Reforming catalysts for hydrogen generation in fuel cell applications. J. Power Sources160(1),490–499 (2006).
  • Soler L, Candela AM, Macanás J et al. Hydrogen generation from water and aluminum promoted by sodium stannate. Int. J. Hydrogen Energy35(3),1038–1048 (2010).
  • Roach PJ, Woodward WH, Castleman AW Jr, Reber AC, Khanna SN. Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science323(5913),492–495 (2009).
  • King RR, Law DC, Edmondson KM et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett.90(18),183516–183518 (2007).
  • Philipps SP, Perharz G, Hoheisel R et al. Energy harvesting efficiency of III–V triple-junction concentrator solar cells under realistic spectral conditions. Sol. Energ. Mat. Sol. Cells94(5),869–877 (2010).
  • Service RF. Hydrogen economy? Let sunlight do the work. Science.315(5813),789 (2007).
  • de Groot H. Integration of Catalysis with storage for the design of multi-electron photochemistry devices for solar fuel. Appl. Magn. Reson.37(1),497–503 (2010).
  • Nam YS, Magyar AP, Lee D et al. Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat. Nano.5(5),340–344 (2010).
  • Sun L, Hammarström L, Åkermark B, Styring S. Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production. Chem. Soc. Rev.30(1),36–49 (2001).
  • Hammarström L. Towards artificial photosynthesis: ruthenium-manganese chemistry mimicking photosystem II reactions. Curr. Opin. Chem. Biol.7(6),666–673 (2003).
  • Hammarström L, Sun L, Åkermark B, Styring S. Artificial photosynthesis: towards functional mimics of photosystem II. BBA Bioenergetics.1365(1–2),193–199 (1998).
  • Bennett IM, Farfano HMV, Bogani F et al. Active transport of Ca2+ by an artificial photosynthetic membrane. Nature420(6914),398–401 (2002).
  • Smirnov AY, Mourokh LG, Ghosh PK, Nori F. High-efficiency energy conversion in a molecular triad connected to conducting leads. J. Phys. Chem. C.113,21218–21224 (2009).
  • Keirstead AE, Bridgewater JW, Terazono Y et al. Photochemical ‘triode’ molecular signal transducer. J. Am. Chem. Soc.132(18),6588–6595 (2010).
  • Zouni A, Witt HT, Kern J et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature409(6821),739–743 (2001).
  • Ghosh PK, Smirnov AY, Nori F. Modeling light-driven proton pumps in artificial photosynthetic reaction centers. J. Chem. Phys.131(3),035102–035112 (2009).
  • Tan SS, Zou L, Hu E. Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets. Catalysis Today.115(1ndash;4),269–273 (2006).
  • Luo T-JM, Soong R, Lan E, Dunn B, Montemagno C. Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat. Mater.4(3),220–224 (2005).
  • Pitard B, Richard P, Duñach M, Girault G, Rigaud JL. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. Eur. J. Biochem.235(3),779–788 (1996).
  • Choi H-J, Montemagno CD. Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett.5(12),2538–2542 (2005).
  • Dimroth P, Kaim G, Matthey U. Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases. J. Exp. Biol.203(1),51–59 (2000).
  • Choi H-J, Montemagno CD. Biosynthesis within a bubble architecture. Nanotechnology17(9),2198 (2006).
  • Wendell DW, Patti J, Montemagno CD. Using biological inspiration to engineer functional nanostructured materials. Small2(11),1324–1329 (2006).
  • Wendell D, Todd J, Montemagno C. Artificial photosynthesis in ranaspumin-2 based foam. Nano Lett.10(9),3231–3236 (2010).
  • Mano J, Ushimaru T, Asada K. Ascorbate in thylakoid lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase. Photosynth. Res.53(2),197–204 (1997).
  • Steinberg-Yfrach G, Rigaud JL, Durantini EN, Moore AL, Gust D, Moore TA. Light-driven production of ATP catalyzed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature392(6675),479–482 (1998).
  • Ye X, Wang Y, Hopkins RC et al. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. ChemSusChem2(2),149–152 (2009).
  • Zhang Y-HP, Evans BR, Mielenz JR, Hopkins RC, Adams MWW. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One2(5),e456 (2007).
  • Gibson DG, Glass JI, Lartigue C et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science329(5987),1–6 (2010).
  • Antizar-Ladislao B, Turrion-Gomez JL. Second-generation biofuels and local bioenergy systems. Biofuels Bioproducts Biorefining2(5),455–469 (2008).
  • Atsumi S, Hanai T, Liao JC. Nonfermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature451(7174),86–89 (2008).
  • Logan BE et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Env. Sci. Tech.42(23),8630–8640 (2008).
  • Chae K-J, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen. Env. Sci. Tech.43(24),9525–9530 (2009).
  • Wukovits W, Schnitzhofer W. Fuels – hydrogen production, biomass:fermentation. Encyclopedia of Electrochemical Power Sources. Garche J (Ed.) Elsevier. Amsterdam, The Netherlands, 268–275 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.