65
Views
17
CrossRef citations to date
0
Altmetric
Review

Novelties of the cellulolytic system of a marine bacterium applicable to cellulosic sugar production

, , &
Pages 59-70 | Published online: 09 Apr 2014

Bibliography

  • Lynd LR, Laser MS, Bransby D et al. How biotech can transform biofuels. Nat. Biotechnol.26(2),169–172 (2008).
  • Wyman CE. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol.25(4),153–157 (2007).
  • Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science314(5805),1598–1600 (2006).
  • Goldemberg J. Ethanol for a sustainable energy future. Science315(5813),808–810 (2007).
  • Hill J, Polasky S, Nelson E et al. Climate change and health costs of air emissions from biofuels and gasoline. Proc. Natl Acad. Sci. USA106(6),2077–2082 (2009).
  • Lynd LR, Elander RT, Wyman CE. Likely features and costs of mature biomass ethanol technology. Appl. Biochem. Biotechnol.57/58, 741–761 (1996).
  • Himmel ME, Ding SY, Johnson DK et al. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science315(5813),804–807 (2007).
  • Zhang Y, Lynd L. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng.88,797–824 (2004).
  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev.66(3),506–577 (2002).
  • Warren RA. Microbial hydrolysis of polysaccharides. Annu. Rev. Microbiol.50,183–212 (1996).
  • Tomme P, Warren A, Gilkes N. Cellulose hydrolysis by bacteria and fungi. Adv. Microbiol. Physiol.37,2–81 (1995).
  • Rubin EM. Genomics of cellulosic biofuels. Nature454(7206),841–845 (2008).
  • Shallom D, Shoham Y. Microbial hemicellulases. Curr. Opin. Microbiol.6,219–228 (2003).
  • Buchanan B, Gruissem W, Jones R. Biochemistry and Molecular Biology of Plants. Wiley-VCH, London, UK (2000).
  • O’Sullivan A. Cellulose: the structure slowly unravels. Cellulose4,173–207 (1997).
  • Sandgren M, Stahlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog. Biophys. Mol. Biol.89,246–291 (2005).
  • Matthews JF, Skopec CE, Mason PE et al. Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr. Res.341,138–152 (2006).
  • Din S-Y, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food. Chem.54,597–606 (2006).
  • Hilden L, Johansson G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol. Lett.26,1683–1693 (2004).
  • Reese ET. History of the cellulase program at the U.S. army Natick Development Center. Biotechnol. Bioeng. Symp.6,9–20 (1976).
  • Cortez JM, Ellis J, Bishop DP. Cellulase finishing of woven, cotton fabrics in jet and winch machines. J. Biotechnol.89(2–3),239–245 (2001).
  • Vinzant T, Adney W, Decker S et al. Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Appl. Biochem. Biotechnol.91/93, 99–107 (2001).
  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels2,19 (2009).
  • Baker J, Ehrman C, Adney W, Thomas S, Himmel M. Hydrolysis of cellulose using tertinary mixtures of purified cellulases. Appl. Biochem. Biotechnol.70/72, 395–403 (1998).
  • Martinez D, Berka RM, Henrissat B et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol.26(5),553–560 (2008).
  • Le Crom S, Schackwitz W, Pennacchio L et al. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA106(38),16151–6. (2009).
  • Zhou J, Wang Y-H, Chu J, Luo L-Z, Zhuang Y-P, Zhang S-L. Optimization of cellulase mixture for efficient hydrolysis of steam-exploded corn stover by statistically designed experiments. Bioresour. Technol.100,819–825 (2009).
  • Irwin D, Specio M, Walker L, Wilson D. Activity studies of eight purified cellulases: specificity, synergism and binding domain effects. Biotechnol. Bioeng.42,1002–1013 (1993).
  • Palonen H, Tenkanen M, Linder M. Dynamic interaction of Trichoderma reesei cellobiohydrolases Cel6A and Cel7A and cellulose at equilibrium and during hydrolysis. Appl. Environ. Microbiol.65(12),5229–5233 (1999).
  • Zhang YH, Lynd LR. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol. Bioeng.94(5),888–898 (2006).
  • Saha BC. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol.30(5),279–291 (2003).
  • Ishizawa CI, Davis MF, Schell DF, Johnson DK. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food. Chem.55(7),2575–2581 (2007).
  • Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng.86(1),88–95 (2004).
  • Jeoh T, Johnson DK, Adney WS, Himmel ME. Measuring cellulase accessibility of dilute-acid pretreated corn stover. American Chemical Society, Division of Fuel Chemistry50(2),673–674 (2005).
  • Morrison IM. The effect of physical and chemical treatments on the degradation of wheat and barley straws by rumen liquor–pepsin and pepsin–cellulase systems. J. Sci. Food Agric.34(12),1323–1329 (1983).
  • Gaillard B. Comparison of the hemicelluloses from plants belonging to two different plant families. Phytochemistry4(4),631–634 (2001).
  • Sun R, Sun XF, Tomkinson J. Hemicelluloses: Science and Technology. American Chemical Society, DC, USA 2–22 (2004).
  • Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L. Hydrolysis of cellulose and hemicellulose. In: Polysaccharides: Structural Diversity and Functional Versatility. CRC Press, Florence, KY, USA, 995–1033 (2005).
  • Dekker RFH, Richards GN. Hemicellulases: their occurrence, purification, properties, and mode of action. Adv. Carbohydr. Chem. Biochem.32,277–352 (1976).
  • Robert FHD. Bioconversion of hemicellulose: aspects of hemicellulase production by Trichoderma reesei QM 9414 and enzymic saccharification of hemicellulose. Biotechnol. Bioeng.25(4),1127–1146 (1983).
  • Ghose TK, Bisaria VS. Measurement of hemicellulase activities. Part 1: xylanases. Pure Appl. Chem.59(12),1739–1752 (1987).
  • Carpita NC. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol.47,445–476 (1996).
  • Venkatesh B, Leonardo da Costa S, Shishir PSC et al. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods Populus (Populus nigra). Biotechnol. Progr.25(2),365–375 (2009).
  • Jeffries WT. Biodegradation of lignin and hemicelluloses. In: Biochemistry of Microbial Degradation. Ratledge C (Ed.). Kluwer Academic Publishers, Boston, MA, USA, 233–277 (1994).
  • Pettersen RC. The chemical composition of wood. In: The Chemistry of Solid Wood. Rowell RM (Ed.). American Chemical Society, DC, USA (1984).
  • Brigham JS, Adney WS, Himmel ME. Hemicellulose: Diversity and Applications. Taylor and Francis, DC, USA (1996).
  • Kumar R, Wyman CE. Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour. Technol.100(18),4203–4213 (2009).
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol.83(1),1–11 (2002).
  • Lynd LR, Cushman JH, Nichols RJ, Wyman CE. Fuel ethanol from cellulosic biomass. Science251(4999),1318–1323 (1991).
  • Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol.84–86, 5–37 (2000).
  • Yang B, Wyman CE. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng.94(4),611–617 (2006).
  • Dehority BA, Johnson RR, Conrad HR. digestibility of forage hemicellulose and pectin by rumen bacteria in vitro and the effect of lignification thereon. J. Dairy Sci.45(4),508–512 (1962).
  • Kumar R, Wyman CE. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments. Biotechnol. Bioeng.103(2),252–267 (2009).
  • Selig M, Vinzant T, Himmel M, Decker S. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol.155(1),94–103 (2009).
  • Stinson JA, Ham RK. Effect of lignin on the anaerobic decomposition of cellulose as determined through the use of a biochemical methane potential method. Environ. Sci. Technol.29(9),2305–2310 (1995).
  • Chang VS, Burr B, Holtzapple MT. Lime pretreatment of switchgrass. Appl. Biochem. Biotechnol.63–65, 3–19 (1997).
  • Sewalt VJH, Ni W, Jung HG, Dixon RA. Lignin impact on fiber degradation: increased enzymic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food. Chem.45(5),1977–1983 (1997).
  • Mooney CA, Mansfield SD, Touhy MG, Saddler JN. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresour. Technol.64(2),113–119 (1998).
  • Kang L, Wang W, Lee Y. Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl. Biochem. Biotechnol.161(1),53–66 (2010).
  • Weil J, Westgate P, Kohlmann K, Ladisch MR. Cellulose pretreatments of lignocellulosic substrates. Enzyme. Microb. Technol.16(11),1002–1004 (1994).
  • Knauf M, Moniruzzaman M. Lignocellulosic biomass processing: a perspective. Int. Sugar J.106(1263),147–150 (2004).
  • Mosier N, Wyman C, Dale B et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol.96(6),673–686 (2005).
  • Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Adv. Biochem. Eng. Biotechnol.108,67–93 (2007).
  • Yang B, Wyman CE. Pretreatment. The key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod. Biorefin.2(1),26–40 (2008).
  • Gharpuray MM, Lee YH, Fan LT. Structural modification of lignocellulosics by pretreatments to enhance enzymic hydrolysis. Biotechnol. Bioeng.25(1),157–172 (1983).
  • Bonn G, Oefner PJ, Bobleter O. Analytical determination of organic acids formed during hydrothermal and organosolv degradation of lignocellulosic biomass. Fresen. J. Anal. Chem.331,46–50 (1988).
  • Xuejun P, Claudio A, Neil G et al. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol. Bioeng.90,473–481. (2005).
  • Zhang Y-HP, Zhu Z, Rollin J, Sathitsuksanoh N. Advances in cellulose solvent- and organic solvent-based lignocellulose fractionation (COSLIF). In: Cellulose solvents: For Analysis, Shaping and Chemical Modification, Liebert T (Ed.). American Chemical Society, DC, USA 365–379 (2010).
  • Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. NREL Report No. TP-580–26157 (1999).
  • Zhang Y-HP, Ding S-Y, Mielenz JR et al. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng.97(2),214–223 (2007).
  • Anantharam PD, Sasidhar V, Constance AS. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol. Bioeng.95(5),904–910 (2006).
  • Berlin A, Muñoz C, Gilkes N et al. An evaluation of british columbian beetle-killed hybrid spruce for bioethanol production. Appl. Biochem. Biotechnol.137–140(1),267–280 (2007).
  • Kumar R, Mago G, Balan V, Wyman CE. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol.100(17),3948–3962 (2009).
  • Andrykovitch G, Marx I. Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl. Environ. Microbiol.54,3–4 (1988).
  • Gonzalez JM, Weiner RM. Phylogenetic characterization of marine bacterium strain 2-40, a degrader of complex polysaccharides. Int. J. Syst. Evol. Microbiol.50(2),831–834 (2000).
  • Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int. J. Syst. Evol. Microbiol.55(4),1545–1549 (2005).
  • Alva Munoz LE, Riley MR. Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol. Bioeng.100(5),882–888 (2008).
  • Ensor L, Stotz SK, Weiner RM. Expression of multiple insoluble complex polysaccharide degrading enzyme systems by a marine bacterium. J. Ind. Microbiol. Biotechnol.23,123–126 (1999).
  • Howard MB, Ekborg NA, Taylor LE, Weiner RM, Hutcheson SW. Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans strain 2-40. J. Bacteriol.185(11),3352–3360 (2003).
  • Taylor L, Henrissat B, Coutinho P et al. A complete cellulase system in the marine bacterium Saccharophagus degradans strain 2-40. J. Bacteriol.188,3849–3861 (2006).
  • Ekborg N, Taylor L, Weiner R, Hutcheson S. Genomic and proteomic analysis of the agarolytic system of Saccharophagus degradans strain 2-40. Appl. Environ. Microbiol.72,3396–3405 (2006).
  • Weiner R, Taylor L, Henrissat B et al. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40. PLOS Genetics4,e1000087 (2008).
  • Shin MH, Lee DY, Skogerson K et al. Global metabolic profiling of plant cell wall polysaccharide degradation by Saccharophagus degradans. Biotechnol. Bioeng.105(3),477–488 (2010).
  • Lombard V, Bernard T, Rancurel C et al. A hierarchial classification of polysaccharide lyases for glycogenomics. Biochem. J.432,437–444 (2010).
  • Boraston A, Bolam D, Gilbert H, Davies G. Carbohydrate binding modules: fine tuning polysaccharide recognition. Biochem. J.382,769–781 (2004).
  • Henshaw J, Money V, Bolam D et al. Family 6 carbohydrate binding modules in β-agarases display exquisite selectivity for the non-reducing termini of agarose. J. Biol. Chem279,21552–21559 (2006).
  • Guillén D, Sánchez S, Rodríguez-Sanoja R. Carbohydrate-binding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol.85(5),1241–1209 (2010).
  • Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW. Processive Endoglucanases Mediate Degradation of Cellulose by Saccharophagus degradans. J. Bacteriol.191(18),5697–5705 (2009).
  • Vincent F, Molin DD, Weiner RM, Bourne Y, Henrissat B. Structure of a polyisoprenoid binding domain from Saccharophagus degradans implicated in plant cell wall breakdown. FEBS Lett.584(8),1577–1584 (2010).
  • Fraiberg M, Borovok I, Weiner RM, Lamed R. Discovery and characterization of cadherin domains in Saccharophagus degradansJ. Bacteriol.192(4),1066–1074 (2010).
  • DeBoy RT, Mongodin EF, Fouts DE et al. Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus. J. Bacteriol.190(15),5455–5463 (2008).
  • Howard MB, Ekborg NA, Taylor LE, Hutcheson SW, Weiner RM. Identification and analysis of polyserine linker domains in prokaryotic proteins with emphasis on the marine bacterium Microbulbifer degradans. Protein. Sci.13(5),1422–1425 (2004).
  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RA. Domains in microbial β-1,4-glycanases: sequence conservation, function, and enzyme families. Microbiol. Rev.55(2),303–315 (1991).
  • Hazlewood GP, Gilbert HJ. Structure and function analysis of Pseudomonas plant cell wall hydrolases. Prog. Nucleic Acid Res. Mol. Biol.61,211–241 (1998).
  • Zverlov VV, Velikodvorskaya GV, Schwarz WH, Bronnenmeier K, Kellermann J, Staudenbauer WL. Multidomain structure and cellulosomal localization of the Clostridium thermocellum cellobiohydrolase CbhA. J. Bacteriol.180(12),3091–3099 (1998).
  • Zhang H, Moon YH, Watson BJ et al. Hydrolytic and phosphorolytic metabolism of cellobiose by the marine aerobic bacterium Saccharophagus degradans 2-40T. J. Ind. Microbiol. Biotechnol. (2011) (In press).
  • Shin MH, Lee DY, Liu KH, Fiehn O, Kim KH. Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Anal. Chem.82(15),6660–6666 (2010).
  • Ko JK, Jung MW, Kim KH, Choi IG.Optimal production of a novel endo-acting β-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). Nat. Biotechnol.26(3–4),157–164 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.