8,760
Views
105
CrossRef citations to date
0
Altmetric
Review

Growth and agronomy of Miscanthus x giganteus for biomass production

, , , , &
Pages 71-87 | Published online: 09 Apr 2014

Bibliography

  • Heaton EA, Clifton-Brown J, Voigt TB, Jones MB, Long SP. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig. Adapt. Strateg. Glob. Change9,433–451 (2004).
  • Heaton EA, Dohleman FG, Long SP. Meeting US biofuel goals with less land: the potential of Miscanthus.Glob. Chang. Biol.14,2000–2014 (2008).
  • Lewandowski I, Clifton-Brown J, Scurlock JMO, Huisman W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy19,209–227 (2000).
  • Linde-Laursen I. Cytogenetic analysis of Miscanthus giganteus, an interspecific hybrid. Hereditas119,297–300 (1993).
  • Scally L, Hodkinson TR, Jones MB. Origins and taxonomy of Miscanthus. In: Miscanthus For Energy and Fibre. Jones MB, Walsh M (Eds). James & James, London, UK, 1–9 (2001).
  • Clifton-Brown J, Chiang YC, Hodkinson TR. Miscanthus: genetic resources and breeding potential to enhance bioenergy production. In: Genetic Improvement of Bioenergy Crops. Vermerris W (Ed.). Springer Science & Business Media, LLC NY, USA 273–294 (2008).
  • Hodkinson TR, Renvoize S. Nomenclature of Miscanthus x giganteus (Poaceae). Kew Bull.56,759–760 (2001).
  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA. The use of DNA sequencing (ITS and TRNL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am. J. Bot.89,279–286 (2002).
  • Hodkinson TR, Chase MW, Renvoize SA. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann. Bot.89,627–636 (2002).
  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy and US Department of Agriculture, Oak Ridge National Laboratory, TN, USA (2005).
  • Barkworth ME, Miscanthus Andersson. In: Manual of Grasses for North America. Barkworth ME, Anderton LK, Capels KM, Long S, Piep MB (Eds). Utah State University Press, UT, USA 326–327 (2007).
  • Amalraj VA, Balasundaram N. On the taxonomy of the members of ‘Saccharum complex’. Genet. Resour. Crop Evol.53(1),35–41 (2006).
  • Hodkinson TR, Chase MW, Leido MD, Salamin N, Renvoize SA. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL Intron and trnL-F tntergenic spacers. J. Plant Res.115,381–392 (2002).
  • Chen SL, Renvoize SA. Miscanthus.Flora of China22,581–583 (2006).
  • Ibaragi Y. The taxonomy of Diandranthus (Poaceae). Acta Phytotax. Geobot.54,1364–7565 (2003).
  • Ibaragi Y, Oshashi H. A taxanomic study of Miscanthus section Kariyasua (Gramineae). J. Japan Bot.79,4–22 (2004).
  • Lafferty J, Lelley T. Cytogenetic studies of different Miscanthus species with potential for agricultural use. Plant Breeding113(3),246–249 (1994).
  • Yu CY, Hyoung SK, Rayburn AL, Widholm JM, Juvik JA. Chromosome doubling of the bioenergy crop, Miscanthus x giganteus.Glob. Change Biol. Bioenergy1(6),404–412 (2009).
  • Stewart JR, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. Glob. Change Biol. Bioenergy1(2),126–153 (2009).
  • Long SP. C-4 photosynthesis at low-temperatures. Plant Cell Environ.6(4),345–363 (1983).
  • Beale CV, Bint DA, Long SP. Leaf photosynthesis in the C4-grass Miscanthus x giganteus, growing in the cool temperate climate of southern England. J. Exp. Bot47(2),267–273 (1996).
  • Naidu SL, Moose SP, Al-Shoaibi AK, Raines CA, Long SP. Cold tolerance of C-4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C-4 photosynthetic enzymes. Plant Physiol.132(3),1688–1697 (2003).
  • Carroll A, Somerville C. Cellulosic biofuels. Annu. Rev. Plant. Biol.60,165–182 (2009).
  • Hatch MD, Kagawa T, Craig S. Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Aust. J. Plant Physiol.2(11),1–128 (1975).
  • Cousins AB, Badger MR, Von Caemmerer S. C4 photosynthetic isotope exchange in NAD-ME-and NADP-ME-type grasses. J. Exp. Bot.59(7),1695–1703 (2008).
  • Farquhar GD. On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol.10(2),205–226 (1983).
  • Hattersley PW, Watson L. Diversification of photosynthesis. In: Grass Evolution and Domestication. (Eds). Cambridge University Press, Cambridge, UK, 38–116 (1992).
  • Ehleringer JR, Monson RK. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Sys.24,411–439 (1993).
  • Long SP. The application of physiological and molecular understanding of the effects of the environment on photosynthesis in the selection of novel ‘fuel’ crops; with particular reference to C4 perennials. In: Plant production on the threshold of a new century-congress of the 75th anniversary of Wageningen Agricultural University. Struick PC, Vredenberg W, Renkema JA, Parlevet JE (Eds). Kluwer Academic Publishers, MA, USA, 231–244 (1994).
  • Ghannoum O, Evans JR, Chow, WS, Andrews TJ, Conroy JP, Von Caemmerer S. Faster rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme relative to NAD-malic enzyme C4 grasses. Plant Physiol.137(2),638 (2005).
  • Beale CV, Morison JIL, Long SP. Water use efficiency of C4 perennial grasses in a temperate climate. Agr. Forest. Meteorol.96(1–3),103–115 (1999).
  • Heaton E, Voigt T, Long SP. A quantitative review comparing the yieldsof two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass Bioenergy27(1),21–30 (2004).
  • Pyter R, Voigt TB, Heaton EA, Dohleman FG, Long SP. Giant Miscanthus: biomass crop for Illinois. In: Issues in new crops and new uses. Janick J, Whipkey A (Eds). ASHS Press, VA, USA, 39–42 (2007).
  • Monteith JL, Moss CJ. Climate and the efficiency of crop production in Britain. Phil. Trans. R. Soc. Lond. B281(980),277–294. (1977).
  • Beadle CL, Long SP. Photosynthesis – is it limiting to biomass production? Biomass8(2),119–168 (1985).
  • Beale CV, Long SP. Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ.18(6),641–650 (1995).
  • Dohleman FG, Long SP. More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol.150(4),2104 (2009).
  • Dohleman F, Heaton E, Leakey A, Long S. Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Enviro.32(11),1525–1537 (2009).
  • Clifton-Brown JC, Lewandowski I. Water-use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply. Ann. Bot.86(1),191–200 (2000).
  • Bullard MJ, Heath MC, Nixon PMI. Shoot growth, radiation interception and dry matter production and partitioning during the establishment phase of Miscanthus sinensis ‘Giganteus’ grown at two densities in the UK. Ann. Appl. Biol.126,365–378 (1995).
  • Clifton-Brown JC, Long SP, Jorgensen U. Miscanthus productivity. In: Miscanthus For Energy and Fibre. Jones MB, Walsh M (Eds). James & James, London, UK 46–67 (2001).
  • Lewandowski I, Scurlock JMO, Lindvall E, Christou M. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy25(4),335–361 (2003).
  • Lewandowski I, Heinz A. Delayed harvest of Miscanthus-influences on biomass quantity and quality and environmental impacts of energy production. Eur. J. Agron.19(1),45–63 (2003).
  • Heaton EA, Dohleman FG, Long SP. Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. Glob. Change Biol. Bioenergy.1(4),297–307 (2009).
  • Long SP, Beale CV. Resource capture by Miscanthus. In: Miscanthus For Energy and Fibre. Jones MB, Walsh M (Eds). James & James, London, 10–20 (2001).
  • Beale CV, Long SP. Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus x giganteus and Spartina cynosuroides.Biomass Bioenergy12(6),419–428 (1997).
  • Speller C. The potential for growing biomass crops for fuel on surplus land in the UK. Outlook Agric.22(1),23–29 (1993).
  • Lewandowski I. Propagation method is an important factor in the growth and development of Miscanthus x giganteus.Ind. Crops Prod.8,229–245 (1998).
  • Pyter R, Heaton E, Dohleman F, Voigt T, Long S. Agronomic experiences with Miscanthus x giganteus in Illinois, USA. In: Biofuels: Methods and protocols. Mielenz JR (Ed.). Human Press, NY, USA, 41–52 (2009).
  • Pyter RJ, Dohleman FG, Voigt TB. Effects of rhizome size, depth of planting and cold storage on Miscanthus x giganteus establishment in the midwestern USA. Biomass Bioenergy34(10),1466–1470 (2010).
  • Christian DG, Yates NE, Riche AB. Estimation of ramet production from Miscanthus x giganteus rhizome of different ages. Ind. Crops Prod.30,176–178 (2009).
  • Huisman SA, Kortleve WJ. Mechanization of crop establishment, harvest and postharvest conservation of Miscanthus sinensis Giganteus. Ind. Crops Prod.2,289–297 (1994).
  • Clifton-Brown JC, Lewandowski I. Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol.148,287–294 (2000).
  • Clifton-Brown JC Lewandowski I, Andersson B et al. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron. J.93,1013–1019 (2001).
  • Schwarz H, Liebhard P, Ehrendorfer K, Ruckenbauer P. The effect of fertilization on yield and quality of Miscanthus sinensis ‘Giganteus’.Indust. Crops Prod.2(3),153–159 (1994).
  • Christian DG, Riche AB, Yates NE. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Indust. Crops Prod.28,320–327 (2008).
  • Himken M, Lammel J, Neukirchen D, Czypionka KU, Olfs HW. Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil189,117–126 (1997).
  • Ercoli L, Mariotti M, Masoni A, Bonari E. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus.Field Crops Res.63,3–11 (1999).
  • Clifton-Brown JC, Breuer J, Jones MB. Carbon mitigation by the energy crop, Miscanthus.Glob. Change Biol.13,2296–2307 (2007).
  • Christian DG, Haase E. Agronomy of Miscanthus. In: Miscanthus for Energy and Fibre. Jones MB, Walsh M (Eds). James & James Ltd., London, UK, 21–45 (2001).
  • Lewandowski I, Kicherer A, Vonier P. CO2-balance for the cultivation and combustion of Miscanthus.Biomass Bioenergy8(2),81–90 (1995).
  • Buhler DD, Netzer DA, Riemenschneider DE, Hartzler RG. Weed management in short rotation poplar and herbaceous perennial crops grown for biofuel production. Biomass Bioenergy14(4),385–394 (1998).
  • Speller CS. Weed control in Miscanthus and other annually harvested biomass crops for energy or industrial use. Presented at: Brighton Crop Protection Conference – Weeds: Proceedings of an International Conference. Brighton, UK (1993).
  • Huisman W, Venturi P, Molenaar J. Costs of supply chains of Miscanthus giganteus.Indust. Crops Prod.6(3–4),353–366 (1997).
  • Bullard MJ, Nixon PMI, Kilpatrick JB, Heath MC, Speller CS. Principles of weed control in Miscanthus spp. under contrasting field conditions. Presented at: Brighton Crop Protection Conference – Weeds: Proceedings of an International Conference. Brighton, UK (1995).
  • Venturi P, Gigler JK, Huisman W. Economical and technical comparison between herbaceous (Miscanthus x giganteus) and woody energy crops (Salix viminalis). Renew. Energ.16(1–4),1023–1026 (1999).
  • Anderson EK, Voigt TB, Bollero GA, Hager AG. Miscanthus x giganteus response to preemergence and postemergence herbicides. Weed Technol.24(4),453–460 (2010).
  • Prasifka JR, Bradshaw JD, Meagher RL, Nagoshi RN, Steffey KL, Gray ME. Development and feeding of fall armyworm on Miscanthus x giganteus and switchgrass. J. Econ. Entomol.102(6),2154–2159 (2009).
  • Christian DG, Bullard MJ, Wilkins C. The agronomy of some herbaceous crops grown for energy in southern England. Asp. Appl. Biol.49,41–51 (1997).
  • Huggett DAJ, Leather SR, Walters KFA. Suitability of the biomass crop Miscanthus sinensis as a host for aphids Rhopalosiphum padi (L.) and Rhopalosiphum maidis (F.) and its susceptibility to the plant luteovirus barley yellow dwarf virus. Agricult. For. Entomol.1(2),143–149 (1999).
  • Hurej M, Twardowski J. Phytophagous insects on Miscanthus giganteus (Miscanthus x giganteus L.). Progr. Plant Prot.49(3),1183–1186 (2009).
  • Bradshaw JD, Prasifka JR, Steffey KL, Gray ME. First report of field populations of two potential aphid pests of the bioenergy crop Miscanthus x giganteus.Fla. Entomol.93(1),135–137 (2010).
  • Spencer JL, Raghu S. Refuge or Reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize. Plos ONE4(12),e8336 (2009).
  • Mekete T, Gray ME, Niblack TL. Distribution, morphological description, and molecular characterization of Xiphinema and Longidorous spp. associated with plants (Miscanthus spp. and Panicum virgatum) used for biofuels. Glob. Change Biol. Bioenergy1(4),257–266 (2009).
  • Bullard MJ, Heath MC, Nixon PMI. Shoot growth, radiation interception and dry-matter production and partitioning during the establishment phase of Miscanthus sinensis giganteus grown at 2 densities in the UK. Ann. Appl. Biol.126(2),365–378 (1995).
  • Christian DG, Lamptey JNL, Forde SMD, Plumb RT. 1st report of barley yellow dwarf luteovirus on Miscanthus in the UK. Eur. J. Plant Pathol.100(2),167–170 (1994).
  • Remlein-Starosta D. Diseases of bioenergy crops. Prog. Plant Protect.47(4),351–357 (2007).
  • O’Neill NR, Farr DF. Miscanthus blight, a new foliar disease of ornamental grasses and sugarcane incited by Leptosphaeria sp, and its anamorphic state Stagonospora sp. Plant Dis.80(9),980–987 (1996).
  • Ahonsi MO, Agindotan BO, Williams DW et al. First report of Pithomyces chartarum causing a leaf blight of Miscanthus x giganteus in Kentucky. Plant Dis.94(4),480–481 (2010).
  • Agindotan BO, Ahonsi MO, Domier LL, Gray ME, Bradley CA. A method for the identification of RNA viruses of miscanthus and switchgrass. Phytopath.99(6),S2 (2009).
  • Tsukiboshi T, Takahashi K, Uegaki R, Sugawara K. Black choke disease of warm season grasses caused by Ephelis japonica in Japan and its epiphytic features. (JARQ)-Jpn. Agr. Res. Quart.42(3),173–179 (2008).
  • Harvey J, Hutchens M. Progress in commercial development of Miscanthus in England. Presented at: Proc. 8th European Biomass Conf. Austria (1995).
  • Powlson DS, Riche AB, Shield I. Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann. Appl. Biol.146(2),193–201 (2005).
  • Miguez FE, Villamil MB, Long SP, Bollero GA. Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agr. Forest Meteor.148, (8–9),1280–1292 (2008).
  • Boote KJ, Jones JW, Pickering NB. Potential uses and limitations of crop models. Agron. J.88(5),704–716 (1996).
  • Miguez FE, Zhu X, Humphries S, Bollero GA, Long SP. A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus x giganteus: description, parameterization and validation. Glob. Change Biol. Bioenergy1(4),282–296 (2009).
  • Clifton-Brown JC, Neilson B, Lewandowski I, Jones MB. The modeled productivity of Miscanthus × giganteus (GREEF et DEU) in Ireland. Ind. Crops Prod.12(2),97–109 (2000).
  • Stampfl PF, Clifton-Brown JC, Jones MB. European-wide GIS-based modeling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Glob. Change Biol.13(11),2283–2295 (2007).
  • Clifton-Brown JC, Stampfl PF, Jones MB. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob. Change Biol.10(4),509–518 (2004).
  • Khanna M, Dhungana B, Clifton-Brown J. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy32(6),482–493 (2008).
  • Lewandowski I, Clifton-Brown JC, Andersson B et al. Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J.95(5),1274–1280 (2003).
  • Hastings A, Clifton-Brown J, Wattenbach M, Stampfl P, Mitchell CP, Smith P. Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agron. Sustain. Dev.28,465–472 (2008).
  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Smith P. The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. Glob. Change Biol. Bioenergy1(2),154–170 (2009).
  • Dondini M, Hastings A, Saiz G, Jones MB, Smith P. The potential of Miscanthus to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. Glob. Change Biol. Bioenergy1(6),413–425 (2009).
  • Richter GM, Riche AB, Dailey AG, Gezan SA, Powlson DS. Is UK bio-fuelsupply from Miscanthus water-limited? Soil Use Manag.24,235–245 (2008).
  • Humphries SW, Long, SP. WIMOVAC: a software package for modeling the dynamics of plant leaf and canopy photosynthesis. Comput. Appl. Biosci.11,361–371 (1995).
  • Propheter JL, Staggenborg S. Performance of annual and perennial biofuel crops: nutrient removal during the first two years. Agron. J.102,798–805 (2010).
  • Propheter JL, Staggenborg SA, Wu X, Wang D. Performance of annual and perennial biofuel crops: yield during the first two years. Agron. J.102,806–814 (2010).
  • Clifton-Brown JC, Lewandowski I, Bangerth F, Jones MB. Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus.New Phytol.154(2),335–345 (2002).
  • Jørgensen U, Muhs HJ. Miscanthus breeding and improvement. In: Miscanthus for Energy and Fibre. Jones MB, Walsh M (Eds). James & James Ltd., London, UK, 68–85 (2001).
  • Meyer MH, Tchida CL. Miscanthus Anderss. produces viable seed in four USDA hardiness zones. J. Environ. Hort.17(3),137–140 (1999).
  • Barney JN, Ditomaso JM. Non-native species and bioenergy: are we cultivatingthe next invader? Bioscience58(1),64–70 (2008).
  • Raghu S, Anderson RC, Daehler CC et al. Adding biofuels to the invasive species fire? Science313(5794),1742–1742 (2006).
  • Mack RN. Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci.56(6),883–888 (2008).
  • Pheloung PC, Williams PA, Halloy SR. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ. Manage57(4),239–251 (1999).
  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK. Consistent accuracy of the Australian weed risk assessment system across varied geographies. Divers. Distrib.14(2),234–242 (2008).
  • Gordon DR, Onderdonk DA, Fox AM, Stocker RK, Gantz C. Predicting invasive plants in Florida using the Australian weed risk assessment. Invasive Plant Sci. Manag.1(2),178–195 (2008).
  • Goldemberg J. Ethanol for a sustainable energy future. Science315,808–810 (2007).
  • Tew TL, Cobill RM. Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Genetic Improvement of Bioenergy Crops. Vermerris W (Ed.). Springer Science & Business Media, LLC NY, USA 249–272 (2008).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.