6,470
Views
1,178
CrossRef citations to date
0
Altmetric
Review

Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis

, , , , , , , , , & show all
Pages 71-106 | Published online: 09 Apr 2014

Bibliography

  • PerlackR, Wright L, Turhollow A et al.Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. US Department of Energy, DC, USA (2005).
  • Energie aus Biomasse – Grundlagen, Techniken, Verfahren (2nd Edition). Kaltschmitt M, Hartmann H, Hofbauer H (Eds). Springer Verlag, Berlin, Germany (2009).
  • Larkum A. Limitations and prospects of natural photosynthesis for bioenergy production. Curr. Opin. Biotech.21(3),271–276 (2010).
  • Pratt K, Moran D. Evaluating the cost–effectiveness of global biochar mitigation potential. Biomass Bioenerg.34(8),1149–1158 (2010).
  • Mathews JA. Carbon-negative biofuels. Energy Policy36(3),940–945 (2008).
  • Whitman T, Lehmann J. Biochar – one way forward for soil carbon in offset mechanisms in Africa? Environ. Sci. Policy.12(7),1024–1027 (2009).
  • Biochar for Environmental Management. Lehmann J, Joseph S (Eds). Earthscan, London, UK (2009).
  • Sohi S, Krull E, Lopez-Capel E, Bol R. A review of biochar and its use and function in soil. Adv. Agron.105,47–82 (2010).
  • Antal MJ, Gronli M. The art, science, and technology of charcoal production. Ind. Eng. Chem. Res.42(8),1619–1640 (2003).
  • IUPAC Compendium of Chemical Terminology (2nd Edition). McNaught AD, Wilkinson A (Eds). Blackwell Science, Oxford, UK (1997).
  • Fitzer E, Kochling K, Boehm HP, Marsh H. Recommended terminology for the description of carbon as a solid (IUPAC Recommendations 1995). Pure Appl. Chem.67(3),473–506 (1995).
  • Lehmann J, Joseph S. Biochar for environmental management – an introduction. In: Biochar for Environmental Management: Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 1–12 (2009).
  • Verheijen F, Diafas I, Jeffery S, Bastos A, Velde MVD. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. EC Joint Research Centre, Brussels, Belgium, Report No. EUR 24099 EN – 2010 (2010).
  • AmazonianDark Earths: Explorations in Space and Time. Glaser B, Woods WI (Eds). Springer Verlag, Berlin, Germany (2004).
  • Sohi S, Lopez-Capel E, Krull E, Bol R Biochar, Climate Change and Soil: A Review to Guide Future Research. Commonwealth Scientific and Industrial Research Organisation, Science Report No. 05/09 (2009).
  • Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuel. Bioprod. Bior.4(2),160–177 (2010).
  • Hu B, Wang K, Wu L et al. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater.22(7),813–828 (2010).
  • Lal R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci.60,158–169 (2009).
  • Glaser B, Haumaier L, Guggenberger G, Zech W. The ‘Terra preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften88(1),37–41 (2001).
  • Lehmann J, Czimczik C, Laird D, Sohi S. Stability of biochar in soil. In: Biochar for Environmental Management – Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 183–205 (2009).
  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem.41(2),210–219 (2009).
  • Wang Q, Li H, Chen L, Huang X. Monodispersed hard carbon spherules with uniform nanopores. Carbon39,2211–2214 (2001).
  • Titirici M, Antonietti M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev.39,103–116 (2010).
  • Ro KS, Novak J, Bae S, Flora JRV, Berge ND. Greenhouse gas emission from soil amended with biochar made from hydrothermally carbonizing swine solids. Presented at: American Chemical Society National Meeting. San Francisco, CA, USA, 21–25 March 2010.
  • Rillig MC, Wagner M, Salem M et al. Material derived from hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol.45,238–242 (2010).
  • Bridgwater AV. Pyrolysis – state of the art. In: Success & Visions for Bioenergy: Thermal Processing of Biomass for Bioenergy, Biofuels and Bioproducts. Bridgwater AV (Ed.). CPL Press, Newbury, Berks, UK (2007).
  • Bugge G. Industrie der Holzdestillations-Produkte. Theodor Steinkopff, Dresden and Leipzig, Germany (1927).
  • Nowak A. Chemische Holzverwertung. Hartleben, Vienna, Austria (1932).
  • Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renew. Sust. Energ. Rev.4,1–73 (2000).
  • Higman C, Burgt MVD. Gasification. Gulf Professional Publishing, Amsterdam, The Netherlands (2003).
  • Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N. Direct liquefaction of biomass. Chem. Eng. Technol.31(5),667–677 (2008).
  • Peterson AA, Vogel F, Lachance RP, Froeling M, Antal MJ. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci.1,32–65 (2008).
  • Liu H, Neubauer Y. Gasification. In: High Temperature Processes in Chemical Engineering. Lackner M (Ed.). ProcessEng Engineering GmbH, Vienna, Austria (2010).
  • Bridle T, Hammerton I, Hertle C. Control of heavy-metals and organochlorines using the oil from sludge process. Water Sci. Technol.22(12),249–258 (1990).
  • Sütterlin H, Trittler R, Bojanowski S, Stadbauer E, Kümmerer K. Fate of benzalkonium chloride in a sewage sludgelow temperature conversion process investigated by LC–LC/ESI–MS/MS. CLEAN – Soil Air Water35(1),81–87 (2007).
  • Seki M. Recent advances in Pd/C-catalyzed coupling reactions. Chem. Inform.37(52),2975–2992 (2006).
  • Lehmann J. Bio-energy in the black. Front. Ecol. Env.5(7),381–387 (2007).
  • CEC. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. Official Journal of the European Union L140/16 (2009).
  • Schuchardt F. [Organische reststoffe aus landwirtschaft, agrarindustrie und kommunen. In: Energie und Rohstoffe aus landwirtschaftlichen Reststoffen – Hydrothermale Carbonisierung ein geeignetes Verfahren?] BMELV, Berlin, Germany (2009).
  • Smeets E, Faaij A, Dees M et al. Areview and harmonization of biomass resource assessments. Proceedings of the17th European Biomass Conference and Exhibition. Hamburg, Germany, 29 June–3 July 2009.
  • Ragland KW, Aerts DJ, Baker AJ. Properties of wood for combustion analysis. Bioresour. Technol.37(2),161–168 (1991).
  • Khalil R, Mészáros E, Grønli M et al. Thermal analysis of energy crops: part I: The applicability of a macro-thermobalance for biomass studies. J. Anal. Appl. Pyrol.81(1),52–59 (2008).
  • Tchobanoglous G, Theisen H, Vigil S. Integrated Solid Waste Management: Engineering Principles and Management Issues. McGraw-Hill, NY, USA (1993).
  • Vesilind P, Worrell W, Reinhart D. Solid Waste Engineering. Brooks/Cole, Pacific Grove, CA, USA (2002).
  • Gordillo G, Annamalai K, Carlin N. Adiabatic fixed-bed gasification of coal, dairy biomass, and feedlot biomass usingan air–steam mixture as an oxidizing agent. Renew. Energ.34(12),2789–2797 (2009).
  • Ro KS, Cantrell KB, Hunt PG. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind. Eng. Chem. Res.49(20),10125–10131 (2010).
  • Thom é-Kozmiensky K. [Biologische Abfallbehandlung. EF – Verlag für Energie und Umwelttechnik], Berlin, Germany (1995).
  • Tchobanoglous G, Stensel DH. In: Wastewater Engineering: Treatment and Reuse: Metcalf & Eddy Inc. (4th Edition). Burton FL (Ed.). McGraw-Hill, NY, USA (2003).
  • Yeoman S, Sterritt R, Rudd T, Lester J. Particle-size fractionation and metal distribution in sewage sludges. Water Air Soil Poll.45(1–2),27–42 (1989).
  • Cantrell K, Ro K, Mahajan D, Anjom M, Hunt PG. Role of thermochemical conversion in livestock waste-to-energy treatments: obstacles and opportunities. Ind. Eng. Chem. Res.46(26),8918–8927 (2007).
  • Ro KS, Cantrell K, Elliott D, Hunt PG. Catalytic wet gasification of municipal and animal wastes. Ind. Eng. Chem. Res.46(26),8839–8845 (2007).
  • Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management: Moving Forward the Sustainable and Welcome Uses of a Global Resource. LeBlanc R, Matthews P, Richard RP (Eds). United Nations Human Settlements Programme (UN-HABITAT), Nairobi, Kenya (2008).
  • European Commission Environment. Urban waste water treatment – Commission Directive 98/15/EC amending Council Directive 98/271/EEC. (1998).
  • Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods – a review. Renew. Sust. Energ. Rev.12(1),116–140 (2008).
  • Esrey S. Towards a recycling society: ecological sanitation – closing the loop to food security. Water Sci.Technol.43(4),177–187 (2001).
  • Suzuki A, Nakamura T, Yokoyama S, Ogi T, Koguchi K. Conversion of sewage-sludge to heavy oil by direct thermochemical liquefaction. J. Chem. Eng. Jpn21(3),288–293 (1988).
  • Campbell H, Bridle T. Conversion of sludge to oil – a novel-approach to sludge management – reply. Water Sci. Technol.21(12),1632–1632 (1989).
  • He P, Gu G, Shao L, Zhang Y. Research on low temperature thermo-chemical conversion to oil process for sewage sludge. Water Sci.Technol.42(3–4),301–308 (2000).
  • Bridle T, Skrypski-Mantele S. Experience and lessons learned from sewage sludge pyrolysis in Australia. Water Sci.Technol.49(10),217–223 (2004).
  • Bandosz T, Block K. Removal of hydrogen sulfide on composite sewage sludge-industrial sludge-based adsorbents. Ind. Eng. Chem. Res.45(10),3666–3672 (2006).
  • Rio S, Le Coq L, Faur C, Lecomte D, Le Cloirec P. Preparation of adsorbents from sewage sludge by steam activation for industrial emission treatment. Process Saf. Environ.84(B4),258–264 (2006).
  • Rozada F, Otero M, Garcia A, Moran A. Application in fixed-bed systems of adsorbents obtained from sewage sludge and discarded tyres. Dyes Pigm.72(1),47–56 (2007).
  • Liu C, Tang Z, Chen Y, Su S, Jiang W. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite. Bioresour. Technol.101(3),1097–1101 (2010).
  • Yoshida T, Antal M. Sewage sludge carbonization for Terra preta applications. Energ. Fuels.23,5454–5459 (2009).
  • Bridle T, Pritchard D. Energy and nutrient recovery from sewage sludge via pyrolysis. Water Sci. Technol.50(9),169–175 (2004).
  • Sanchez M, Lindao E, Margaleff D, Martinez O, Moran A. Biofuels andbiochar production from pyrolysis of sewage sludge. J. Residuals Sci. Tech.6(1),35–41 (2009).
  • Bogner J, Ahmed M, Diaz C et al. Waste management. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Eds). Cambridge University Press, Cambridge, UK (2007).
  • Buah WK, Cunliffe AM, Williams PT. Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ.85(B5),450–457 (2007).
  • Chang YH, Chen WC, Chang NB. Comparative evaluation of RDF and MSW incineration. J. Hazard. Mater.58(1–3),33–45 (1998).
  • Caputo AC, Pelagagge PM. RDF production plants: I design and costs. Appl. Therm. Eng.22(4),423–437 (2002).
  • Luo SY, Xiao B, Hu ZQ, Liu SM. Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor. Int. J. Hydrogen Energ.35(1),93–97 (2010).
  • Downie A, Crosky A, Munroe P. Physical properties of biochar. In: Biocharfor environmental management – scienceand technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 13–32 (2009).
  • Hofbauer H, Kaltschmitt M, Nussbaumer T. [Energie aus Biomasse – Grundlagen, Techniken, Verfahren.] Kaltschmitt M, Hartmann H, Hofbauer H (Eds). Springer Verlag, Berlin, Germany, 375–406 (2009).
  • Groenli MG, Varhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res.41,4201–4208 (2002).
  • Mok WSL, Antal MJ, Szabo P, Varhegyi G, Zelei B. Formation of charcoal from biomass in a sealed reactor. Ind. Eng. Chem. Res.31,1162–1166 (1992).
  • Bobleter O. Hydrothermal degradation of polymers derived from plants. Prog. Polym. Sci.19,797–841 (1994).
  • Landais P, Michels R, Elie M. Are time and temperature the only constraints to the simulation of organic matter maturation? Org. Geochem.22,617–630 (1994).
  • Ruyter HP. Coalification model. Fuel61(12),1182–1187 (1982).
  • Venderbosch RH, Sander C. Hydroconversion of wet biomass: a review. Report GAVE-9919. SenterNovem, Utrecht, The Netherlands (2000).
  • Fang Z, Fang C. Complete dissolution and hydrolysis of wood in hot water. AIChE J.54(10),2751–2758 (2008).
  • BridgwaterAV. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J.91,87–102 (2003).
  • Hatcher PG, Clifford DJ. The organic geochemistry of coal: from plant materials to coal. Org. Geochem.27,251–274 (1997).
  • Hashaikeh R, Fang Z, Butler IS, Hawari J, Kozinski JA. Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel.86(10–11),1614–1622 (2007).
  • Funke A, Ziegler F. Hydrothermal carbonization of biomass: a literature survey focusing on its technical application and prospects. Presented at: 17th European Biomass Conference and Exhibition. Hamburg, Germany, 1037–1050 (2009).
  • Bergius F. [Die Anwendung hoher Drücke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle.]Wilhelm Knapp, Halle a. d. Saale, 41–58 (1913).
  • Schuhmacher JP, Huntjens FJ, van Krevelen DW. Chemical structure and properties of coal XXVI – studies on artificial coalification. Fuel39,223–234 (1960).
  • Sugimoto Y, Miki Y. Chemical structure of artificial coals obtained from cellulose, wood and peat. Proceedings of the 9th International Conference on Coal Science ICCS ‘97. Ziegler A, van Heek KH, Klein J, Wanzl W (Eds). 1,187–190 (1997).
  • van Krevelen DW. Coal: Typology – Physics – Chemistry – Constitution (3rd Edition). Elsevier, Amsterdam 837–846 (1993).
  • Friedl A, Padouvas E, Rotter H, Varmuza K. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta.544,191–198 (2005).
  • Crelling JC, Hagemann HW, Sauter DH et al. Coal. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley VCH, Weinheim, Germany 5–6 (2006).
  • Oden S, Unnerstad A. Über die Nassverkohlung des Torfes. Brennstoff–Chemie.5,249–253 (1924).
  • Sun X, Li Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed.43,597–601 (2004).
  • Cui X, Antonietti M, Yu S. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small2,756–759 (2006).
  • Yao C, Shin Y, Wang L et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system. J. Phys. Chem. C111,15141–15145 (2007).
  • Sevilla M, Fuertes A. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem–Eur. J.15(16),4195–4203 (2009).
  • Baccile N, Laurent G, Babonneau F et al. Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. J. Phys. Chem.113,9644–9654 (2009).
  • Shafizadeh F. Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrolysis.3,283–305 (1982).
  • Siskin M, Katritzky AK. Reactivity of organic compounds in hot water: geochemical and technological implications. Science254,231–237 (1991).
  • 100 Yu Y, Lou X, Wu HW. Some recent advances in hydrolysis of biomass in hot-compressed, water and its comparisons with other hydrolysis methods. Energ. Fuel.22(1),46–60 (2008).
  • Lichtenthaler FW. Towards improving the utility of ketoses as organic raw materials. Carbohydr. Res.313,69–89 (1998).
  • Kabyemela BM, Adschiri T, Malaluan RM, Arai K. Glucose and fructose decomposition in subcritical andsupercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind. Eng. Chem. Res.38,2888–2895 (1999).
  • Titirici MM, Antonietti A, Baccile N. Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/ hexoses. Green Chem.10,1204–1212 (2008).
  • Kuster BFM. 5-hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch/Staerke.42,314–321 (1990).
  • Lewkowski J. Synthesis, chemistry and applications of 5-hydroxymethylfurfural and its derivatives. Arkivoc.17–54 (2001).
  • Karayildirim T, Sinag A, Kruse A. Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification. Chem. Eng. Technol.31,1561–1568 (2008).
  • Titirici MM, Thomas A, Yu S, Müller J, Antonietti M. A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem. Mater.19,4205–4212 (2007).
  • Masselter S, Zemann A, Bobleter O. Analysis of lignin degradation products by capillary electrophoresis. Chromatographia40,51–57 (1995).
  • Evans RJ, Milne TA. Molecular characterization of the pyrolysis of biomass. 1. Fundamentals. Energ. Fuel.1,123–137 (1987).
  • Antal MJ, Croiset E, Dai X et al. High-yield biomass charcoal. Energ. Fuel10,652–658 (1996).
  • Monthioux M, Landais P, Monin J. Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Org. Geochem.8,275–292 (1985).
  • Gaunt JL, Lehmann J. Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ. Sci. Technol.42(11),4152–4158 (2008).
  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ. Sci. Technol.44(2),827–833 (2010).
  • Klason P, von Heidenstam G, Norlin E. Untersuchungen zur Holzverkohlung. Angew. Chem. Int. Ed.25,1205–1214 (1909).
  • Geissler C, Belau L. [Zum Verhalten der stabilen Kohlenstoffisotope bei der Inkohlung.] Z. Angew. Chem.17,13–17 (1971).
  • Hägglund, SE. Vatkolning av Torv. AB Svensk Torvförädling, Lund. (1960).
  • Prins MJ. Thermodynamic analysis of biomass gasification and torrefaction Eindhoven: Technische Universiteit Eindhoven (2005).
  • Mok WSL, Antal MJ. Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis. Thermochim. Acta68,165–186 (1983).
  • Kunihisa KS, Ogawa H. Acid hydrolysis of cellulose in a differential scanning calorimeter. J. Thermal. Anal.30,49–59 (1985).
  • Erlach B, Tsatsaronis G. Upgrading of biomass by hydrothermal carbonisation: analysis of an industrial-scale plant design. Presented at: The23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. Lausanne, Switzerland, 14–17 June 2010.
  • Sehn W, Gerber H. Pyrolyse mit flammenloser oxidation kombinieren. BWK – Das Energie-Fachmagazin.10,22–26 (2007).
  • Mursito AT, Hirajima T, Sasaki K. Upgrading and dewatering of raw tropical peat by hydrothermal treatment. Fuel89(3),635–641 (2010).
  • Bridgwater AV, Toft AJ, Brammer JG. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew. Sus. Energ. Rev.6(3),181–246 (2002).
  • Fischer Z, Bienkowski P. Some remarks about the effect of smoke from charcoal kilns on soil degradation. Environ. Monit. Assess.58,349–358 (1999).
  • Berger S. Entwicklung und technische Umsetzung der Mechanisch/Thermischen Entwässerung zum Einsatz als Vortrocknungsstufe in braunkohlegefeuerten Kraftwerken. Shaker Verlag: Aachen (2001).
  • Myreen B. PDF – new peat technology. Energy Digest.11,14–18 (1982).
  • Lehmann J. A handful of carbon. Nature447(7141),143–144 (2007).
  • Hammes K, Schmidt MWI, Smernik RJ et al. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem. Cycles21,GB3016 (2007).
  • Tsukashima H. The infrared spectra of artificial coal made from submergedwood at Uozu, Toyama Prefecture, Japan. Bull. Chem. Soc. Jpn.39(3),460–465 (1966).
  • Agblevor FA, Beis S, Kim SS, Tarrant R, Mante NO. Biocrude oils from the fast pyrolysis of poultry litter and hardwood. Waste Manag.30(2),298–307 (2010).
  • Zheng J, Jin Y, Chi Y et al. Pyrolysis characteristics of organic components of municipal solid waste at high heating rates. Waste Manag.29(3),1089–1094 (2009).
  • Chan KY, Xu ZH. Biochar – nutrient properties and their enhancement. In: Biochar for Environmental Management: Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 67–84 (2009).
  • KimS, Agblevor FA, Lim J. Fast pyrolysis of chicken litter and turkey litter in a fluidized bed reactor. J. Ind. Eng. Chem.15(2),247–252 (2009).
  • Hossain M, Strezov V, Chan K, Nelson P. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere78(9),1167–1171 (2010).
  • Shinogi Y. Nutrient leaching from carbon products of sludge. ASAE/CSAE Annual International Meeting. Ottawa, ON, Canada, Paper Number 044063 (2004).
  • Fuertes A, Arbestain M, Sevilla M et al. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust. J. Soil Res.48(7),618–626 (2010).
  • Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry85(1),91–118 (2007).
  • Shinogi Y, Kanri Y. Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresour. Technol.90(3),241–247 (2003).
  • Wild T. Demineralisierung und mechanisch/thermische Entwässerung von Braunkohlen und Biobrennstoffen. Shaker Verlag: Aachen (2006).
  • Koutcheiko S, Monreal C, Kodama H, McCracken T, Kotlyar L. Preparation and characterization of activated carbon derived from the thermo-chemical conversion of chicken manure. Bioresource Technol.98(13),2459–2464 (2007).
  • McIntyre A, Papic M. Pyrolysis of municipal solid waste. Can. J. Chem. Eng.52,263–272 (1974).
  • Vassilev SV, Braekman-Danheux C. Characterization of refuse-derived char from municipal solid waste – 2. Occurrence, abundance and source of trace elements. Fuel Process. Technol.59(2–3),135–161 (1999).
  • German Federal Law on Soil Protection (BBodSchG), Law for the protection against harmful structural changes of the soil and for the remediation of contaminated land as of 03/17/98, last amended through article 3 G as of 12/09/04. Federal Law Gazette3214 (2004).
  • Hwang IH, Matsuto T, Tanaka N, Sasaki Y, Tanaami K. Characterization of char derived from various types of solid wastes from the standpoint of fuel recovery and pretreatment before landfilling. Waste Manage.27(9),1155–1166 (2007).
  • Lutz H, Romeiro GA, Damasceno RN, Kutubuddin M, Bayer E. Low temperature conversion of some Brazilian municipal and industrial sludges. Bioresour. Technol.74(2),103–107 (2000).
  • Garcia-Perez M. The formation of polyaromatic hydrocarbons and dioxins during pyrolysis. Report WSUEEP08-010. Washington State University, WA, USA (2008).
  • McLaughlin H, Anderson PS, Shields FE, Reed TB. All biochars are not created equal and how to tell them apart. Presented at: North American Biochars Conference. Boulder, CO, USA, 9–12 August 2009.
  • Joseph S, Peacocke C, Lehmann J, Munroe P. Developing a Biochar classification and test methods. In: Biocharfor Environmental Management – Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 107–126 (2009).
  • Okimori Y, Ogawa M, Takahashi F. Potential of CO2 emission reductions by carbonizing biomass waste from industrial tree plantation in South Sumatra, Indonesia. Mitig. Adapt. Strateg. Glob. Change.8(3),261–280 (2003).
  • IPCC. Climate Change 2007 – The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge, UK (2007).
  • Schmidt MWI, Skjemstad JO, Gehrt E, Kögel-Knabner I. Charred organic carbon in German chernozemic soils. Europ. J. Soil Sci.50(2),351–365 (1999).
  • Lehmann J, Skjemstad J, Sohi S et al. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geosci.1(12),832–835 (2008).
  • Neves EG, Petersen JB, Bartone RN, Silva CAD. Historical and socio-cultural origins of Amazonian Dark Earths. In: Amazonian Dark Earths: Origin, Properties, Management. Lehmann J, Kern DC, Glaser B, Woods WI (Eds). Kluwer Academic Publishers, Dordrecht, The Netherlands, 29–50 (2003).
  • Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the Tropics with charcoal – a review. Biol. Fertil. Soils.35,219–230 (2002).
  • Cheng C, Lehmann J, Thies JE, Burton SD. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res.113(G02027), DOI :10.1029/2007JG000642 (2008) (Epub).
  • Nguyen B, Lehmann J, Kinyangi J et al. Long-term black carbon dynamics in cultivated soil. Biogeochemistry89(3),295–308 (2008).
  • Hammes K, Schmidt M. Changes of biochar in soil. In: Biochar for Environmental Management – Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 169–181 (2009).
  • Cao X, Ro KS, Chappell M, Li Y, Mao J. Chemical structure of swine-manure chars with different carbonization conditions using advanced solid-state 13C NMR spectroscopy. In Print. Energ. Fuel (2011).
  • Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol. Biochem.41(6),1301–1310 (2009).
  • Cheng C, Lehmann J, Thies JE, Burton AJ, Engelhard M. Oxidation of black carbon by biotic and abiotic processes. Organic Geochem.37,1477–1488 (2006).
  • Cheng C, Lehmann J. Ageing of black carbon along a temperature gradient. Chemosphere75(8),1021–1027 (2009).
  • Brodowski S, John B, Flessa H, Amelung W. Aggregate-occluded black carbon in soil. Europ. J. Soil Sci.57(4),539–546 (2006).
  • Wengel M, Kothe E, Schmidt CM, Heide K, Gleixner G. Degradation of organic matter from black shales and charcoal by the wood-rotting fungus Schizophyllum commune and release of DOC and heavy metals in the aqueous phase. Sci. Total Environ.367(1),383–393 (2006).
  • Czimczik CI, Masiello CA. Controls on black carbon storage in soils. Global Biogeochem. Cycles.21(3),GB3005 (2007).
  • Nguyen BT, Lehmann J. Black carbon decomposition under varying water regimes. Organic Geochem.40(8),846–853 (2009).
  • Major J, Lehmann J, Rondon M, Goodale C. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biol.16(4),1366–1379 (2010).
  • Wardle DA, Nilsson M, Zackrisson O. Fire-derived charcoal causes loss of forest humus. Science320(5876),629 (2008).
  • Warnock D, Lehmann J, Kuyper T, Rillig M. Mycorrhizal responses to biochar in soil – concepts and mechanisms. PlantSoil300(1),9–20 (2007).
  • Wright S, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. PlantSoil198(1),97–107 (1998).
  • Rillig M, Caldwell B, Wösten H, Sollins P. Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry85(1),25–44 (2007).
  • Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci.171(4),591–596 (2008).
  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S. Agronomic values of greenwaste biochar as a soil amendment. Austr. J. Soil Res.45(8),629–634 (2007).
  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments. Austr. J. Soil Res.46(5),437–444 (2008).
  • Liang B, Lehmann J, Solomon D et al. Black carbon increases cation exchange capacity in soils. SSSAJ70,1719–1730 (2006).
  • Steiner C, Glaser B, Teixeira WG et al. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J. Plant Nutr. Soil Sci.171(6),893–899 (2008).
  • Kolb SE, Fermanich KJ, Dornbush ME. Effect of charcoal quantity on microbial biomass and activity in temperate soils. SSSAJ73(4),1173–1181 (2009).
  • Thies J, Rillig MC. Characteristics of biochar: biological properties. In: Biochar for Environmental Management: Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 85–105 (2009).
  • Rondon M, Lehmann J, Ramírez J, Hurtado M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol. Fertil. Soils43(6),699–708 (2007).
  • Major J, Husk B. Commercial scale agricultural biochar field trial in Québec, Canada, over two years: Effects of biochar on soil fertility, biology, crop productivity and quality. Experimental Report, BlueLeaf Inc., QC, USA 1–38 (2010).
  • van Zwieten L, Kimber S, Morris S et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. PlantSoil327(1),235–246 (2010).
  • Kammann C. Zwischenbericht zum Stand der Arbeiten im Projekt “Risikoabschätzung des Einsatzes von Biokohle in temperaten Böden - ein Weg zur dauerhaften C-Sequestrierung?” Environment and Geology, Germany. 1–26 (2010).
  • Steiner C, Teixeira M, Zech W. Soil respiration curves as soil fertility indicators in perennial central Amazonian plantations treated with charcoal, and mineral or organic fertilisers. Tropical Sci.47(4),218–230 (2007).
  • van Zwieten L, Singh B, Joseph S et al. Biochar and emissions of non-CO2 greenhouse gases from soil. In: Biochar for Environmental Management – Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 227–249 (2009).
  • Blackwell P, Riethmuller G, Collins M. Biochar application to soil. In: Biochar for Environmental Management: Science and Technology. Lehmann J, Joseph S (Eds). Earthscan, London, UK, 207–226 (2009).
  • Kimetu J, Lehmann J, Ngoze S et al. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems11(5),726–739 (2008).
  • Gaskin JW, Speir RA, Harris K et al.Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J.102(2),623–633 (2010).
  • Oguntunde PG, Fosu M, Ajayi AE, Giesen N. Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol. Fertil. Soils.39(4),295–299 (2004).
  • Novak J, Busscher W, Watts D et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma.154(3–4),281–288 (2010).
  • Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Biores. Technol.101(14),5222–5228 (2010).
  • Lal R. Soil carbon sequestration impacts on global climate change and food security. Science304(5677),1623–1627 (2004).
  • Firestone MK, Davidson EA, Andreae MO, Schimel DS. Microbiological basis of NO and N2O production and consumption in soil. In: Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. John Wiley & Sons Ltd., Chichester, UK, 7–21 (1989).
  • Granli T, Bøckmann OC. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Sciences. Suppl 12, 1–128 (1994).
  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Physics8,389–395 (2007).
  • Kammann C, Müller C, Grünhage L, Jäger H. Elevated CO2 stimulates N2O emissions in permanent grassland. Soil Biol. Biochem.40(9),2194–2205 (2008).
  • Kammann C, Ryan M, Ratering S et al. Treibhausgas-Emissionen (CO2, N2O, CH4) nach Biochar-Applikation (poster presentation). Presented at: Aktiver Klimaschutz und Anpassungsstrategien an den Klimawandel – Beiträge der Agrar – und Forstwirtschaft. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BEMLV) and Johann Heinrich von Thünen Institute (vTI), Volkswagenhalle Braunschweig, 128 (2009).
  • Šimek M, Cooper J. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Europ. J. Soil Sci.53,345–354 (2002).
  • Clough TJ, Kelliher FM, Sherlock RR, Ford CD. Lime and soil moisture effects on nitrous oxide emissions from a urine patch. SSSAJ68,1600–1609 (2004).
  • Yanai Y, Toyota K, Okazaki M. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci. Plant Nutr.53(2),181–188 (2007).
  • Smith MS, Tiedje JM. The effect of roots on soil denitrification 1. SSSAJ.43(5),951–955 (1979).
  • Klemedtsson L, Svensson BH, Rosswall T. Dinitrogen and nitrous oxide produced by denitrification and nitrification in soil with and without barley plants. Plant Soil.99,303–319 (1987).
  • Mosier AR, Duxbury JM, Freney JR, Heinemeyer O, Minami K. Nitrous oxide emissions from agricultural fields: assessment, measurement and mitigation. Plant Soil181,95–108 (1997).
  • Conrad R. Microbial ecology of methanogens and methanotrophs. In: Adv. Agronomy96,1–63 (2007).
  • Powlson DS, Goulding KWT, Willison TW, Webster CP, Hütsch BW. The effect of agriculture on methane oxidation in soil. Nutrient Cyc. Agroecosys.49(1–3),59–70 (1997).
  • Bradford MA, Ineson P, Wookey PA, Lappin-Scott HM. Soil CH4 oxidation: response to forest clearcutting and thinning. Soil Biol. Biochem.32(7),1035–1038 (2000).
  • Veldkamp E, Weitz AM, Keller M. Management effects on methane fluxes in humid tropical pasture soils. Soil Biol. Biochem.33(11),1493–1499 (2001).
  • Rondon M, Ramirez JA, Lehmann J. Charcoal additions reduce net emissions of greenhouse gases to the atmosphere. In: Proceedings of the 3rd USDA Symposium on Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry. University of Delaware, Baltimore, MD, USA, 21–24 March 2005.
  • Priem A, Christensen S. Methane uptake by a selection of soils in Ghana with different land use. J. Geophys. Res.104(D19),23617–23622 (1999).
  • Castro MS, Mellilo JM, Steudler PA, Chapman JW. Soil moisture as a predictor of methane uptake by temperate forest soils. Can. J. Forest Res.24,1805–1810 (1994).
  • Clough T, Bertram JE, Ray JL et al. Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. SSSAJ74,852–860 (2010).
  • Spokas K, Koskinen W, Baker J, Reicosky D. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere77(4),574–581 (2009).
  • Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual.39(4),1224 (2010).
  • van Zwieten L, Kimber S, Morris S et al. Influence of biochars on flux of N2O and CO2 from Ferrosol. Aust. J. Soil Res.48(7),555–568 (2010).
  • Babel S, Kurniawan TA. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater.97(1–3),219–243 (2003).
  • Mohan D, Pittman J. Arsenic removal from water/wastewater using adsorbents – a critical review. J. Hazard. Mater.142(1–2),1–53 (2007).
  • Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technol.97(9),1061–1085 (2006).
  • Radovic LR. Chemistry and Physics of Carbon. CRC Press, USA (2004).
  • Lu GQ, Lau DD. Characterisation of sewage sludge-derived adsorbents for H2S removal. Part 2: surface and pore structural evolution in chemical activation. Gas Sep. Purif.10(2),103–111 (1996).
  • Kadirvelu K, Kavipriya M, Karthika C et al. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol.87(1),129–132 (2003).
  • Bagreev A, Bandosz T. Efficient hydrogen sulfide adsorbents obtained by pyrolysis of sewage sludge derived fertilizer modified with spent mineral oil. Environ. Sci. Technol.38,345–351 (2004).
  • Cao X, Ma L, Cao B, Harris W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol.43(9),3285–3291 (2009).
  • Ramakrishnan M, Nagarajan S. Utilization of waste biomass for the removal of basic dye from water. World Appl. Sci J.5,114–120 (2009).
  • Cheng F, LIang J, Zhao J, Tao Z, Chen J. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. Chem. Mater.20,1889–1895 (2008).
  • Budinova T, Savova D, Tsyntsarski B et al. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Appl. Surf. Sci.255,4650–4657 (2009).
  • Gokee C, Guneysu S, Aydin S, Arayici S. Comparison of activated carbon and pyrolyzed biomass for removal of humic acid from aqueous solution. Open Environ. Pollut. Toxicol. J.1,43–48 (2009).
  • Mohan D, Singh K. Single- and multi-component adsorption of cadmium and zinc activated carbon derived from bagasse – an agricultural waste. Water Res.36,2304–2318 (2002).
  • Demir-Cakan R, Baccile N, Antonietti M, Titirici M. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem. Mater.21(3),484–490 (2009).
  • Namasivayam C, Kavitah D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments.54,47–58 (2002).
  • Lima I, Marshall W. Granular activated carbons from broiler manure: physical, chemical and adsorptive properties. Bioresour. Technol.96,699–706 (2005).
  • Chiang P, You J. Use of sewage sludge for manufacturing adsorbents. Canadian J. Chem. Eng.65(6),922–927 (1987).
  • Qian Q, Machida M, Tatsumoto H. Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresour. Technol.98,353–360 (2007).
  • Mochidzuki K, Sato N, Sakoda A. Production and characterization of carbonaceous adsorbents from biomass wastes by aqueous phase carbonization. Adsorption11,669–673 (2005).
  • Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH – an insight into the chemical activation mechanism. Carbon41,267–275 (2003).
  • Titirici M, Antonietti M, Thomas A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach. Chem. Mater.18(16),3808–3812 (2006).
  • Lei Z, Li J, Ke Y et al. Two-step templating route to macroporous or hollow sphere oxides. J. Mater. Chem.11(12),2930–2933 (2001).
  • Wu B, Yuan R, Fu X. Structural characterization and photocatalyticactivity of hollow binary ZrO2/TiO2 oxide fibers. J. Solid State Chem.182(3),560–565 (2009).
  • Schneider W, Diller W. Phosgene. In: Ullmann’s Encyclopedia of Industrial Chemistry (6th Edition). Wiley-VCH, Weinheim (2002).
  • The Catalyst Technical Handbook – Be Selective. Johnson Matthey Catalysts, NJ, USA (2005).
  • Serp P, Figueiredo JL. Carbon Materials for Catalysis. Wiley, NJ, USA (2008).
  • Du R, Zhu C, Zhang P, Fan R. Selective hydrogenation of aromatic aminoketones by Pd/C catalysis. Synthetic Commun.38(17),2889 (2008).
  • Amorim C, Yuan G, Patterson PM, Keane MA. Catalytic hydrodechlorination over Pd supported on amorphous and structured carbon. J. Catal.234(2),268–281 (2005).
  • Makowski P, Cakan RD, Antonietti M, Goettmann F, Titirici M. Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chem. Commun.8,999–1001 (2008).
  • Matos J, Laine J, Herrmann J. Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B: Environmental.18(3–4),281–291 (1998).
  • Mozia S, Toyoda M, Inagaki M, Tryba B, Morawski AW. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor. J. Hazard. Mater.140(1–2),369–375 (2007).
  • Gottschalk C, Libra JA, Saupe A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications. Wiley-VCH, Weinheim (2010).
  • Zhao L, Chen X, Wang X, et al. One-step solvothermal synthesis of a carbon@TiO2 dyade structure effectively promoting visible-light photocatalysis.Adv. Mater.22(30),3317–3321 (2010).
  • Lee KB, Beaver MG, Caram HS, Sircar S. Reversible chemisorbents for carbon dioxide and their potential applications. Ind. Eng. Chem. Res.47(21),8048–8062 (2008).
  • Day D, Evans R, Lee J, Reicosky D. Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy30(14),2558–2579 (2005).
  • Zhao L, Baccile N, Gross S et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives. Carbon48(13),3778–3787 (2010).
  • White RJ, Antonietti M, Titirici M. Naturally inspired nitrogen doped porous carbon. J. Mater. Chem.19(45),8645–8650 (2009).
  • Zhao L, Bacsik Z, Hedin N et al. Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. ChemSusChem.3(7),840–845 (2010).
  • Ströbel R, Garche J, Moseley P, Jörissen L, Wolf G. Hydrogen storage by carbon materials. J. Power Sources.159(2),781–801 (2006).
  • Antolini E. Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J. Mater. Sci.38(14),2995–3005 (2003).
  • Paraknowitsch JP, Thomas A, Antonietti M. Carbon colloids prepared by hydrothermal carbonization as efficient fuel for indirect carbon fuel cells. Chem. Mater.21(7),1170–1172 (2009).
  • Murugan AV, Muraliganth T, Manthiram A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO[sub 4] (M = Mn, Fe, and Co) Cathodes. J. Electrochem. Soc.156(2),A79-A83 (2009).
  • Béguin F, Frackowiakz E. Electrochemical Energy Storage. In: Adsorption by Carbons. Bottani E, Tascon J (Eds). Elsevier, Amsterdam, 593–629 (2008).
  • Béguin F, Frackowiak E. Carbons for Electrochemical Energy Storage and Conversion Systems (1st Edition). CRC Press, USA (2009).
  • Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon39(6),937–950 (2001).
  • Pandolfo A, Hollenkamp A. Carbon properties and their role in supercapacitors. J. Power Sources.157(1),11–27 (2006).
  • Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J. Power Sources.195(9),2419–2430 (2010).
  • Demir CR, Titirici M, Antonietti M et al. Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. Chem. Commun. (Camb.). (32),3759–3761 (2008).
  • Demir Cakan R, Titirici M, Antonietti M et al. Hydrothermal carbon spheres containing silicon nanoparticles: synthesis and lithium storage performance. Chem. Commun. (Camb.). (32),3759–3761 (2008).
  • US EPA. A Plain English Guide to the EPA Part 503 Biosolids Rule. EPA/832/R-93/003. US EPA, Office of Wastewater Management, DC, USA (1994). Available at:www.epa.gov/owm/mtb/biosolids/503pe
  • US EPA. Decision-Maker’s Guide to Solid Waste Management, Second Edition. US EPA, Municipal and Industrial Solid Waste Division, DC, USA (1995). Available at:www.p2pays.org/ref/03/02021/02021.pdf
  • German Fertiliser Law (DüV), Law about the application of fertilisers, soil additives, growing media and plant additives in accordance to good practice as of 1/10/06, last amended through article 18 G as of 7/31/09. Federal Law Gazette2585 (2009).
  • German Fertiliser Ordinance (DüMV), Ordinance about the placing of fertilisers, soil additives, growing media and plant additives on the market. Federal Law Gazette2524 (2008).
  • German Biowaste Ordinance (BioAbfV), Ordinance about the utilisation of biowastes on soils used in agriculture, forestry and gardening as of September 21, 1998, last amended through article 5 V as of 10/20/06. Federal Law Gazette2298 (2006).
  • German Federal Ordinance on Soil Protection and Contaminated Land (BBodSchV) as of 07/12/19999, last amended through article 2 V as of 12/23/2004. Federal Law Gazette3758 (2004).
  • German Federal Sewage Sludge Ordinance (AbfKlärV) as of 4/15/1992, last amended through article 19 as of 7/29/09. Federal Law Gazette2542 (1992).

▪ ;Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.