490
Views
20
CrossRef citations to date
0
Altmetric
Review

Gasification and synthesis gas fermentation: an alternative route to biofuel production

, &
Pages 405-419 | Published online: 09 Apr 2014

Bibliography

  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science315,801–804 (2007).
  • Lund H. Renewable energy strategies for sustainable development. Energy32,912–919 (2007).
  • McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresour. Technol.83,55–63 (2002).
  • Bridgwater AV. The technical and economic feasibility of biomass gasification for power generation. Fuel74(5),631–653 (1995).
  • Demirbas A. Progress and recent trends in biofuels. Prog. Energ. Combust.33,1–18 (2007).
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol.83,1–11 (2002).
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev.106(9),4044–4098 (2006).
  • Wei L, Pordesimo LO, Igathinathane C, Batchelor WD. Process engineering evaluation of ethanol production from wood through bioprocessing and chemical catalysis. Biomass Bioenerg.33,255–266 (2009).
  • Hayes DJ. An examination of biorefining processes, catalysts and challenges. Catal. Today145,138–151 (2009).
  • Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol.69,627–642 (2006).
  • Jeffries T, Jin YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol.63,495–509 (2004).
  • Henstra AM, Sipma J, Rinzema A, Stams AJM. Microbiology of synthesis gas fermentation for biofuel production. Curr. Opin. Biotechnol.18,200–206 (2007).
  • Evans RJ, Milne TA. Molecular characterization of the pyrolysis of biomass. Energ. Fuels1,123–137 (1987).
  • Babu SP. Observations on the current status of biomass gasification. Biomass Bioenerg.29(4),1–12 (2005).
  • Munasinghe PC, Khanal SK. Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour. Technol.101,5013–5022 (2010).
  • Kuo KK. Principles of Combustion (2nd Edition). John Wiley and Sons, Hoboken, NJ, USA 9 (2005).
  • Reed TB, Das A. Handbook of Biomass Downdraft Gasifier Engine Systems. Solar Energy Research Institute, Golden, CO, USA 1–140 (1988).
  • Kaupp A, Goss JR. Small Scale Gas Producer Engine Systems. Deutsches Zentrum fur Entwicklungstechnologien, Vieweg, Wiesbaden, Germany (1984).
  • Turare C. Biomass Gasification Technology and Utilization. ARTES Institute, University of Flensburg, Glucksburg, Germany (1997).
  • Bhattacharya S, Hla SS, Pham HL. A study on a multi-stage hybrid gasifier-engine system. Biomass Bioenerg.21,445–460 (2001).
  • Tomishige K, Asadullah M, Kunimori K. Syngas production by biomass gasification using Rh/CeO2/SiO2 catalysts and fluidized bed reactor. Catal. Today89,389–403 (2004).
  • Ezeji TC, Qureshi N, Blaschek HP. Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol.18,220–227 (2007).
  • Drake HL, Gößner AS, Daniel SL. Old acetogens, new light. Ann. NY Acad. Sci.1125,100–128 (2008).
  • Pierce E, Xie G, Barabote RD et al. The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ. Microbiol.10(10),2550–2573 (2008).
  • Abrini J, Naveau H, Nyns EJ. Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch. Microbiol.161,345–351 (1994).
  • Tanner RS, Miller LM, Yang D. Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Syst. Evol. Microbiol.43(2),232–236 (1993).
  • Köpke M, Held C, Hujer S et al. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl Acad. Sci.107(29),13087–13092 (2010).
  • Vega JJ, Prieto S, Elmore BB, Clausen EC, Gaddy JL. The biological production of ethanol from synthesis gas. Appl. Biochem. Biotechnol.20/21,781–797 (1989).
  • Vega JL, Clausen EC, Gaddy JL. Design of bioreactors for coal synthesis gas fermentations. Resour. Conserv. Recycling3,149–160 (1990).
  • Ragsdale SW. Enzymology of the Wood–Ljungdahl pathway of acetogenesis. Ann. NY Acad. Sci.1125,129–136 (2008).
  • Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta1784,1873–1898 (2008).
  • Ragsdale SW. The eastern and western branches of the Wood/Ljungdahl pathway: how the east and west were won. Biofactors6,3–11 (1997).
  • Drake H, Hu S, Wood H. Purification of carbon monoxide dehydrogenase, a nickel enzyme from Clostridium thermocaceticum. J. Biol. Chem.255(15),7174–7180 (1980).
  • Müller V, Imkamp F, Rauwolf A, Küsel K, Drake HL. Molecular and cellular biology of acetogenic bacteria. In: Strict and Facultative Anaerobes: Medical and Environmental Aspects. Nakano MM, Zuber P (Eds). Horizon Bioscience, Norfolk, UK 251–281 (2004).
  • Hsu T, Daniel SL, Lux MF, Drake HL. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J. Bacteriol.172(1),212–217 (1990).
  • Savage MD, Wu ZG, Daniel SL, Lundie Jr LL, Drake HL. Carbon monoxide-dependent chemolithotrophic growth of Clostridium thermoautotrophicum. Appl. Environ. Microbiol.53(8),1902–1906 (1987).
  • Baronofsky JJ, Schreurs WJA, Kashket ER. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermoaceticum. Appl. Environ. Microbiol.48(6),1134–1139 (1984).
  • Ragsdale SW. Nickel and the carbon cycle. J. Inorg. Biochem.101,1657–1666 (2007).
  • Menon S. Ragsdale SW. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis. Biochemistry35(37),12119–12125 (1996).
  • Furdui C, Ragsdale SW. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood–Ljungdahl pathway. J. Biol. Chem.275,28494–28499 (2000).
  • Ragsdale SW. Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Rev.103,2333–2346 (2003).
  • Klasson KT, Ackerson MD, Clausen EC, Gaddy JL. Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb. Technol.14,602–608 (1992).
  • Cotter JL, Chinn MS, Grunden AM. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst. Eng.32,369–380 (2009).
  • Ramachandriya KD, DeLorme MJ, Wilkins MR. Heat shocking of Clostridium strain P11 to promote sporulation and ethanol production. Biol. Eng.2(2),115–131 (2010).
  • Kundiyana DK, Huhnke RL, Maddipati P, Atiyeh HK, Wilkins MR. Feasibility of incorporating cotton seed extract in Clostridium strain P11 fermentation medium during synthesis gas fermentation. Bioresour. Technol.101,9673–9680 (2010).
  • Cotter JL, Chinn MS, Grunden AM. Influence of process parameters on growth of Clostridium ljungdahlii and Clostridium autoethanogenum on synthesis gas. Enzyme Microb. Technol.44,281–288 (2009).
  • Heiskanen H, Virkajärvi I, Viikari L. The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb. Technol.41,362–367 (2007).
  • Hu P, Jacobsen LT, Horton JG, Lewis RS. Sulfide assessment in bioreactors with gas replacement. Biochem. Eng. J.49,429–434 (2010).
  • Frankman AW. Redox, pressure and mass transfer effects on syngas fermentation. MS thesis. Brigham Young University, UT, USA (2009).
  • Phillips JR, Klasson KT, Clausen EC, Gaddy JL. Biological production of ethanol from coal synthesis gas: medium development studies. Appl. Biochem. Biotechnol.39/40, 559–571 (1993).
  • Guo Y, Xu J, Zhang Y, Xu H, Yuan Z, Li D. Medium optimization for ethanol production with Clostridium autoethanogenum with carbon monoxide as sole carbon source. Bioresour. Technol.101,8784–8789 (2010).
  • Rajagopalan S, Datar, RP, Lewis RS. Formation of ethanol from carbon monoxide via a new microbial catalyst. Biomass Bioenerg.23,487–493 (2002).
  • Younesi H, Najafpour G, Mohamed AR. Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem. Eng. J.27,110–119 (2005).
  • Najafpour G, Younesi H. Ethanol and acetate synthesis from waste gas using batch culture of Clostridium ljungdahlii. Enzyme Microb. Technol.38,223–228 (2006).
  • Lorowitz WH, Bryant MP. Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol.47(5),961–964 (1984).
  • Hurst KM, Lewis RS. Carbon monoxide partial pressure effects on the metabolic process of syngas fermentation. Biochem. Eng. J.48,159–165 (2010).
  • Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS. Fermentation of biomass-generated producer gas to ethanol. Biotechnol. Bioeng.86(5),587–594 (2004).
  • Ahmed A, Cateni BG, Huhnke RL, Lewis RS. Effects of biomass-generated producer gas constituents on cell growth, product distribution and hydrogenase activity of Clostridium carboxidivorans P7T. Biomass Bioenerg.30,665–672 (2006).
  • Ahmed A, Lewis RS. Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol. Bioeng.97(5),1080–1086 (2007).
  • Kadic E. Survey of gas–liquid mass transfer in bioreactors. MS Thesis. Iowa State Univeristy, IA, USA (2010).
  • Younesi H, Najafpour G, Mohamed AR. Liquid fuel production from synthesis gas via fermentation process in a continuous tank bioreactor (CSTBR) using Clostridium ljungdahlii. Iranian J. Biotechnol.4(1),45–53 (2006).
  • Charpentier JC. Mass-transfer rates in gas–liquid absorbers and reactors. Adv. Chem. Eng.11,1–133 (1981).
  • White A, Ahmed A, Hu P et al. (2007). Fermentation of syngas to ethanol without media replacement. Presented at: 29th Symposium on Biotechnology for Fuels and Chemicals. Denver, CO, USA, 29 April–2 May 2007.
  • Kundiyana DK, Huhnke RL, Wilkins MR. Syngas fermentation in a 100-l pilot scale fermentor: design and process considerations. J. Biosci. Bioeng.109(5),492–498 (2010).
  • Pinatti DG, Conte RA, Soares ÁG et al. Biomass refinery as a renewable romplement to the petroleum refinery. Int. J. Chem. Reactor Eng.8,1–16 (2010).
  • Yang P, Columbus E, Wooten J et al. Evaluation of syngas storage under different pressures and temperatures. Appl. Eng. Agric.25(1),121–128 (2009).
  • Reed T. Biomass Gasification: Principles and Technologies. Energy Technology Review No. 67. Noyes Data Corp, Park Ridge, NJ, USA (1981).
  • Lahijani P, Zainal ZA. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study. Bioresour. Technol.102,2068–2076 (2011).
  • Liou JSC, Balkwill DL, Drake GR, Tanner RS. Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int. J. Syst. Evol. Microbiol.55,2085–2091 (2005).
  • Sakai S, Nakashimada Y, Yoshimoto H, Watanabe S, Okada H, Nishio N. Ethanol production from H2 and CO2 by a newly isolated thermophilic bacterium, Moorella sp. HUC22–1. Biotechnol. Lett.26,1607–1612 (2004).
  • Sakai S, Nakashimada Y, Inokuma K, Kita M, Okada H, Nishio N. Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture. J. Biosci. Bioeng.99,252–258 (2005).
  • Zeikus J, Lynd LH, Thompson T, Krzycki J, Weimer P, Hegge P. Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr. Microbiol.3,381–386 (1980).
  • Younesi H, Najafpour G, Ku Ismail KS, Mohamed AR, Kamaruddin AH. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum. Bioresour. Technol.99,2612–2619 (2008).

▪ Patents

  • Hickey R, Basu R, Datta R, Tsai SP: US0047886A1 (2010).
  • Lanzatech New Zealand Limited: US0203100A1 (2009).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.