124
Views
7
CrossRef citations to date
0
Altmetric
Review

Challenges and perspectives for catalysis in production of diesel from biomass

, , &
Pages 465-483 | Published online: 09 Apr 2014

Bibliography

  • Directive 2003/30/EC of the European Parliament and of the Council. Offic. J. European Union12(2),1–20 (2003).
  • The European Commission. Renewable Energy Road Map. Renewable Energies in the 21st Century: Building a More Sustainable Future. Working Paper: COM(2006) 848 Final. The European Commission, Brussels, Belgium (2007).
  • Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification – a review. Renew. Sust. Energ. Rev.10(3),248–268 (2006).
  • Mittelbach M, Remschmidt C. Biodiesel: the Comprehensive Handbook. Mittelbach M (Ed.). Martin Mittelbach, Graz, Austria (2006).
  • Knothe G. Biodiesel: current trends and properties. Top. Catal.53(11–12),714–720 (2010).
  • Snåre M, Kubicková I, Mäki-Arvela P, Eränen K, Murzin DY. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind. Eng. Chem. Res.45(16),5708–5715 (2006).
  • Huber GW, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed.46(38),7184–7201 (2007).
  • Guzman A, Torres JE, Prada LP, Nuñez ML. Hydroprocessing of crude palm oil at pilot plant scale. Catal. Today.156(1–2),38–43 (2010).
  • Simakova I, Simakova O, Mäki-Arvela P, Murzin DY. Decarboxylation of fatty acids over Pd supported on mesoporous carbon. Catal. Today.150(1–2),28–31 (2010).
  • Kikhtyanin OV, Rubanov AE, Ayupov AB, Echevsky GV. Hydroconversion of sunflower oil on Pd/SAPO-31 catalyst. Fuel89(10),3085–3092 (2010).
  • Tamunaidu P, Bhatia S. Catalytic cracking of palm oil for the production of biofuels: optimization studies. Bioresour. Technol.98(18),3593–3601 (2007).
  • Na J-G, Yi BE, Kim JN et al. Hydrocarbon production from decarboxylation of fatty acid without hydrogen. Catal. Today.156(1–2),44–48 (2009).
  • Šimáček P, Kubička D. Hydrocracking of petroleum vacuum distillate containing rapeseed oil: evaluation of diesel fuel. Fuel89(7),1508–1513 (2010).
  • Huber GW, Chheda JN, Barrett CJ, Dumesic JA. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science308(5727),1446–1450 (2005).
  • Chheda JN, Huber GW, Dumesic JA. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed.46(38),7164–7183 (2007).
  • Serrano-Ruiz JC, Wang D, Dumesic JA. Catalytic upgrading of levulinic acid to 5-nonanone. Green Chem.12(4),574–577 (2010).
  • Abatzoglou N, Dalai A, Gitzhofer F. Green diesel from Fischer–Tropsch synthesis: challenges and hurdles. Presented at: 3rd IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development. Greece, 24–26 July 2007.
  • Zhang W. Automotive fuels from biomass via gasification. Fuel Process. Technol.91(8),866–876 (2010).
  • Stöcker M. Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew. Chem. Int. Ed.47(48),9200–9211 (2008).
  • Carlson TR, Jae J, Lin Y-C, Tompsett GA, Huber GW. Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions. J. Catal.270(1),110–124 (2010).
  • Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind. Eng. Chem. Res.48(23),10324–10334 (2009).
  • Donnis B, Egeberg RG, Blom P, Knudsen KG. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Top. Catal.52(3),229–240 (2009).
  • Knothe G. Analyzing biodiesel: standards and other methods. J. Am. Oil Chem. Soc.83(10),823–833 (2006).
  • Koskinen M, Sourander M, Nurminen M. Apply a comprehensive approach to biofuels. Hydrocarb. Process.85(2),81–86 (2006).
  • Snåre M, Murzin DY. Reply to ‘Comment on heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel’. Ind. Eng. Chem. Res.45(20),6875–6875 (2006).
  • Mikkonen S. Second-generation renewable diesel offers advantages. Hydrocarb. Process.87(Feb),63–66 (2008).
  • Sharma YC, Singh B, Korstad J. Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofpr.5(1),69–92 (2011).
  • Yan S, DiMaggio C, Mohan S, Kim M, Salley SO, Ng KYS. Advancements in heterogeneous catalysis for biodiesel synthesis. Top. Catal.53(11–12),721–736 (2010).
  • Melero JA, Iglesias J, Morales G. Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem.11(9),1285–1308 (2009).
  • Semwal S, Arora AK, Badoni RP, Tuli DK. Biodiesel production using heterogeneous catalysts. Bioresour. Technol.102(3),2151–2161 (2010).
  • Choudhary TV, Phillips CB. Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A397(1–2),1–12 (2011)
  • Bulushev DA, Ross JHR. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal. Today DOI: 10.1016/j.cattod.2011.02.005 (2011) (Epub ahead of print).
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev.106(9),4044–4098 (2006).
  • Jacobson K, Gopinath R, Meher LC, Dalai AK. Solid acid catalyzed biodiesel production from waste cooking oil. Appl. Catal. B85(1–2),86–91 (2008).
  • Casanave D, Duplan J-L, Freund E. Diesel fuels from biomass. Pure Appl. Chem.79(11),2071–2081 (2007).
  • Sivasamy A, Cheah KY, Fornasiero P, Kemausuor F, Zinoviev S, Miertus S. catalytic applications in the production of biodiesel from vegetable oils. ChemSusChem2(4),278–300 (2009).
  • Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin Jr JG. Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res.44(14),5353–5363 (2005).
  • Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress Energ. Combust. Science31(5–6),466–487 (2005).
  • Mo X, Lotero E, Lu C, Liu Y, Goodwin JG. A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catal. Lett.123(1–2),1–6 (2008).
  • Liu X, He H, Wang Y, Zhu S. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal. Comm.8(7),1107–1111 (2007).
  • Pugnet V, Maury S, Coupard V et al. Stability, activity and selectivity study of a zinc aluminate heterogeneous catalyst for the transesterification of vegetable oil in batch reactor. Appl. Catal. A374(1–2),71–78 (2010).
  • Russbueldt BME, Hoelderich WF. New rare earth oxide catalysts for the transesterification of triglycerides with methanol resulting in biodiesel and pure glycerol. J. Catal.271(2),290–304 (2010).
  • Kawashima A, Matsubara K, Honda K. Development of heterogeneous base catalysts for biodiesel production. Bioresour. Technol.99(9),3439–3443 (2008).
  • Shu Q, Yang B, Yuan H, Qing S, Zhu G. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal. Comm.8(12),2158–2164 (2007).
  • Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè AM. Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid–base catalyst. Appl. Catal. A378(2),160–168 (2010).
  • Li E, Rudolph V. Transesterification of vegetable oil to biodiesel over mgo-functionalized mesoporous catalysts. Energ. Fuels22(1),145–149 (2008).
  • Georgogianni KG, Katsoulidis AP, Pomonis PJ, Kontominas MG. Transesterification of soybean frying oil to biodiesel using heterogeneous catalysts. Fuel Process. Technol.90(5),671–676 (2009).
  • Georgogianni KG, Katsoulidis AK, Pomonis PJ, Manos G, Kontominas MG. Transesterification of rapeseed oil for the production of biodiesel using homogeneous and heterogeneous catalysis. Fuel Process. Technol.90(7–8),1016–1022 (2009).
  • Liu Y, Lotero E, Goodwin Jr JG, Mo X. Transesterification of poultry fat with methanol using Mg-Al hydrotalcite derived catalysts. Appl. Catal. A331(),138–148 (2007).
  • Brito A, Borges ME, Garín M, Hernández A. Biodiesel production from waste oil using Mg-Al layered double hydroxide catalysts. Energ. Fuels23(6),2952–2958 (2009).
  • Kim MJ, Park SM, Chang DR, Seo G. Transesterification of triacetin, tributyrin, and soybean oil with methanol over hydrotalcites with different water contents. Fuel Process. Technol.91(6),618–624 (2010).
  • Chuayplod P, Trakarnpruk W. Transesterification of rice bran oil with methanol catalyzed by Mg(Al)La hydrotalcites and metal/MgAl oxides. Ind. Eng. Chem. Res.48(9),4177–4183 (2009).
  • Macala GS, Robertson AW, Johnson CL et al. Transesterification catalysts from iron doped hydrotalcite-like precursors: solid bases for biodiesel production. Catal. Lett.122(3),205–209 (2008).
  • Li E, Xu ZP, Rudolph V. MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Appl. Catal. B88(1–2),42–49 (2009).
  • Guerreiro L, Pereira PM, Fonseca IM et al. PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis. Catal. Today156(3–4),191–197 (2010).
  • Schuchardt U. Transesterification of soybean oil catalyzed by alkylguanidines heterogenized on different substituted polystyrenes. J. Mol. Catal. A Chem.109(1),37–44 (1996).
  • Villa A, Tessonnier J-P, Majoulet O, Su DS, Schlögl R. Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides. Chem. Comm. (29), 4405–4407 (2009).
  • Cerro-Alarcón M, Corma A, Iborra S, Martínez C, Sabater MJ. Methanolysis of sunflower oil using gem-diamines as active organocatalysts for biodiesel production. Appl. Catal. A382(1),36–42 (2010).
  • Cerro-Alarcón M, Corma A, Iborra S, Gómez JP. Biomass to fuels: a water-free process for biodiesel production with phosphazene catalysts. Appl. Catal. A346(1–2),52–57 (2008).
  • Kim M-Y, Seo G, Kwon OZ, Chang DR. The exceptional activity of a phosphazenium hydroxide catalyst incorporated onto silica in the transesterification of tributyrin with methanol. Chem. Comm. (21), 3110–3112 (2009).
  • Verziu M, El Haskouri J, Beltran D et al. Mesoporous tin–triflate based catalysts for transesterification of sunflower oil. Top. Catal.53(11–12),763–772 (2010).
  • Saravanamurugan S, Han D, Koo J, Park S. Transesterification reactions over morphology controlled amino-functionalized SBA-15 catalysts. Catal. Comm.9(1),158–163 (2008).
  • Savonnet M, Aguado S, Ravon U et al. Solvent free base catalysis and transesterification over basic functionalised metal–organic frameworks. Green Chem.11(11),1729–1732 (2009).
  • Liu Y, Lotero E, Goodwinjr J, Lu C. Transesterification of triacetin using solid Brønsted bases. J. Catal.246(2),428–433 (2007).
  • Sunita G, Devassy BM, Vinu A, Sawant DP, Balasubramanian VV, Halligudi SB. Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts. Catal. Comm.9(5),696–702 (2008).
  • Park Y-M, Lee JY, Chung S-H et al. Esterification of used vegetable oils using the heterogeneous WO3/ZrO2 catalyst for production of biodiesel. Bioresour. Technol.101(Suppl. 1),S59–S61 (2010).
  • Komintarachat C, Chuepeng S. Solid acid catalyst for biodiesel production from waste used cooking oils. Ind. Eng. Chem. Res.48(20),9350–9353 (2009).
  • Ngaosuwan K, Mo X, Goodwin Jr JG, Praserthdam P. Effect of solvent on hydrolysis and transesterification reactions on tungstated zirconia. Appl. Catal. A380(1–2),81–86 (2010).
  • Kulkarni MG, Gopinath R, Meher LC, Dalai AK. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem.8(12),1056–1062 (2006).
  • Zhang X, Li J, Chen Y et al. Heteropolyacid nanoreactor with double acid sites as a highly efficient and reusable catalyst for the transesterification of waste cooking oil. Energ. Fuels23(9),4640–4646 (2009).
  • Morin P, Hamad B, Sapaly G et al. Transesterification of rapeseed oil with ethanol. I. Catalysis with homogeneous Keggin heteropolyacids. Appl. Catal. A330,69–76 (2007).
  • Oliveira CF, Dezaneti LM, Garcia FAC et al. Esterification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia. Appl. Catal. A372(2),153–161 (2010).
  • Cardoso AL, Augusti R, Silva MJ. Investigation on the esterification of fatty acids catalyzed by the H3PW12O40 heteropolyacid. J. Am. Oil Chem. Soc.85(6),555–560 (2008).
  • Srilatha K, Lingaiah N, Devi BLAP, Prasad RBN, Venkateswar S, Prasad PSS. Esterification of free fatty acids for biodiesel production over heteropoly tungstate supported on niobia catalysts. Appl. Catal. A365(1),28–33 (2009).
  • Xu L, Wang Y, Yang X, Hu J, Li W, Guo Y. Simultaneous esterification and transesterification of soybean oil with methanol catalyzed by mesoporous Ta2O5/SiO2–[H3PW12O40/R] (R = Me or Ph) hybrid catalysts. Green Chem.11(3),314–317 (2009).
  • Lam MK, Lee KT, Mohamed AR. Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: an optimization study. Appl. Catal. B93(1–2),134–139 (2009).
  • Suwannakarn K, Lotero E, Goodwin Jr JG, Lu C. Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides. J. Catal.255(2),279–286 (2008).
  • Du Y, Liu S, Ji Y et al. Synthesis of sulfated silica-doped tin oxides and their high activities in transesterification. Catal. Lett.124(1–2),133–138 (2008).
  • López DE, Goodwin Jr JG, Bruce DA, Furuta S. Esterification and transesterification using modified-zirconia catalysts. Appl. Catal. A339(1),76–83 (2008).
  • Rattanaphra D, Harvey A, Srinophakun P. simultaneous conversion of triglyceride/free fatty acid mixtures into biodiesel using sulfated zirconia. Top. Catal.53(),773–782 (2010).
  • JC Zhang J, Yarmo MA. Structure and reactivity of silica-supported zirconium sulfate for esterification of fatty acid under solvent-free condition. Appl. Catal. A332(2),209–215 (2007).
  • Chung K-H, Chang D-R, Park B-G. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Bioresour. Technol.99(16),7438–7443 (2008).
  • Carmo Jr A, Desouza L, Dacosta C, Longo E, Zamian J, Darochafilho G. Production of biodiesel by esterification of palmitic acid over mesoporous aluminosilicate Al-MCM-41. Fuel88(3),461–468 (2009).
  • Jiménez-Morales I, Santamaría-González J, Maireles-Torres P, Jiménez-López A. Zirconium doped MCM-41 supported WO3 solid acid catalysts for the esterification of oleic acid with methanol. Appl. Catal. A379(1–2),61–68 (2010).
  • Dhainaut J.; Dacquin J-P, Lee AF, Wilson K. Hierarchical macroporous–mesoporous SBA-15 sulfonic acidcatalysts for biodiesel synthesis. Green Chem.12(2),296–303 (2010).
  • Shibasaki-Kitakawa N, Tsuji T, Chida K, Kubo M, Yonemoto T. Simple continuous production process of biodiesel fuel from oil with high content of free fatty acid using ion-exchange resin catalysts. Energ. Fuels24(6),3634–3638 (2010).
  • Özbay N, Oktar N, Tapan NA. Esterification of free fatty acids in waste cooking oils (WCO): role of ion-exchange resins. Fuel87(10–11),1789–1798 (2008).
  • Feng Y, He B, Cao Y et al. Biodiesel production using cation-exchange resin as heterogeneous catalyst. Bioresour. Technol.101(5),1518–1521 (2010).
  • Caetano CS, Guerreiro L, Fonseca IM, Ramos AM, Vital J, Castanheiro JE. Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Appl. Catal. A359(1–2),41–46 (2009).
  • Soldi RA, Oliveira ARS, Ramos LP, César-Oliveira MAF. Soybean oil and beef tallow alcoholysis by acid heterogeneous catalysis. Appl. Catal. A361(1–2),42–48 (2009).
  • Okayasu T, Saito K, Nishide H, Hearn MTW. Preparation of a novel poly(vinylsulfonic acid)-grafted solid phase acid catalyst and its use in esterification reactions. Chem. Comm. (31), 4708–4710 (2009).
  • Melero JA, Bautista LF, Iglesias J, Morales G, Sánchez-Vázquez R, Suárez-Marcos I. Biodiesel production over arenesulfonic acid-modified mesostructured catalysts: optimization of reaction parameters using response surface methodology. Top. Catal.53(11–12),795–804 (2010).
  • Zięba A, Drelinkiewicz A, Konyushenko E, Stejskal J. Activity and stability of polyaniline sulfate-based solid acid catalysts for the transesterification of triglycerides and esterification of fatty acids with methanol. Appl. Catal. A383(1–2),169–181 (2010).
  • Toda M, Takagaki A, Okamura M et al. Biodiesel made with sugar catalyst. Nature438(7065),178 (2005).
  • Hara M. Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid Brønsted acid catalyst. Top. Catal.53(11–12),805–810 (2010).
  • Dehkhoda AM, West AH, Ellis N. Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A382(2),197–204 (2010).
  • Lien Y-S, Hsieh L-S, Wu JCS. Biodiesel synthesis by simultaneous esterification and transesterification using oleophilic acid catalyst. Ind. Eng. Chem. Res.49(5),2118–2121 (2010).
  • Nakajima K, Okamura M, Kondo JN et al. Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem. Mater.21(1),186–193 (2009).
  • Wu Q, Chen H, Han M, Wang D, Wang J. Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Ind. Eng. Chem. Res.46(24),7955–7960 (2007).
  • Lapis AAM, de Oliveira LF, Neto BAD, Dupont J. Ionic liquid supported acid/base-catalyzed production of biodiesel. ChemSusChem1(8–9),759–762 (2008).
  • DaSilveira Neto B, Alves M, Lapis A et al. 1-n-butyl-3-methylimidazolium tetrachloro-indate (BMI.InCl4) as a media for the synthesis of biodiesel from vegetable oils. J. Catal.249(2),154–161 (2007).
  • Han M, Yi W, Wu Q, Liu Y, Hong Y, Wang D. Preparation of biodiesel from waste oils catalyzed by a Brønsted acidic ionic liquid. Bioresour. Technol.100(7),2308–2310 (2009).
  • Li K-X, Chen L, Yan Z-C, Wang H-L. Application of pyridinium ionic liquid as a recyclable catalyst for acid-catalyzed transesterification of jatropha oil. Catal. Lett.139(3–4),151–156 (2010).
  • Liang X, Yang J. Synthesis of a novel multi-SO3H functionalized ionic liquid and its catalytic activities for biodiesel synthesis. Green Chem.12(2),201–204 (2010).
  • Nassreddine S, Karout A, Lorraine Christ M, Pierre AC. Transesterification of a vegetal oil with methanol catalyzed by a silica fibre reinforced aerogel encapsulated lipase. Appl. Catal. A344(1–2),70–77 (2008).
  • Shakeri M, Kawakami K. Effect of the structural chemical composition of mesoporous materials on the adsorption and activation of the Rhizopus oryzae lipase-catalyzed trans-esterification reaction in organic solvent. Catal. Comm.10(2),165–168 (2008).
  • Dizge N, Aydiner C, Imer DY, Bayramoglu M, Tanriseven A, Keskinler B. Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour. Technol.100(6),1983–1991 (2009).
  • Keng PS, Basri M, Ariff AB, Abdul Rahman MB, Abdul Rahman RNZ, Salleh AB. Scale-up synthesis of lipase-catalyzed palm esters in stirred-tank reactor. Bioresour. Technol.99(14),6097–6104 (2008).
  • Fu B, Vasudevan PT. Effect of organic solvents on enzyme-catalyzed synthesis of biodiesel. Energ. Fuels23(8),4105–4111 (2009).
  • Xiao M, Mathew S, Obbard JP. Biodiesel fuel production via transesterification of oils using lipase biocatalyst. GCB Bioenergy1(2),115–125 (2009).
  • Hernández-Martín E, Otero C. Different enzyme requirements for the synthesis of biodiesel: novozym 435 and lipozyme TL IM. Bioresour. Technol.99(2),277–286 (2008).
  • Yin J, Xiao M, Song J. Biodiesel from soybean oil in supercritical methanol with co-solvent. Energ. Convers. Manage.49(5),908–912 (2008).
  • Hegel P, Mabe G, Pereda S, Brignole E. Phase transitions in a biodiesel reactor using supercritical methanol. Ind. Eng. Chem. Res.46(19),6360–6365 (2007).
  • Saka S, Isayama Y, Ilham Z, Jiayu X. New process for catalyst-free biodiesel production using subcritical acetic acid and supercritical methanol. Fuel89(7),1442–1446 (2010).
  • Zhou C-HC, Beltramini JN, Fan Y-X, Lu GQM. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev.37(3),527–549 (2008).
  • Johnson DT, Taconi KA. The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environm. Progress.26(4),338–348 (2007).
  • Kubička D, Kaluža L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl. Catal. A372(2),199–208 (2010).
  • Šimáček P, Kubička D, Šebor G, Pospíšil M. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel88(3),456–460 (2009).
  • Kubička D, Bejblová M, Vlk J. Conversion of vegetable oils into hydrocarbons over CoMo/MCM-41 catalysts. Top. Catal.53(3–4),168–178 (2010).
  • Kubička D, Šimáček P, Žilková N. Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Top. Catal.52(1–2),161–168 (2009).
  • Huber GW, O’Connor P, Corma A. Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A329,120–129 (2007).
  • Şenol O, Viljava T-R, Krause AOI. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts. Appl. Catal. A326(2),236–244 (2007).
  • Ryymin E-M, Honkela ML, Viljava T-R, Krause AOI. Insight to sulfur species in the hydrodeoxygenation of aliphatic esters over sulfided NiMo/γ-Al2O3 catalyst. Appl. Catal. A358(1),42–48 (2009).
  • Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Wärnå J, Murzin DY. Production of diesel fuel from renewable feeds: kinetics of ethyl stearate decarboxylation. Chem. Eng. J.134(1–3),29–34 (2007).
  • Mäki-Arvela P, Kubičková I, Snåre M, Eränen K, Murzin DY. Catalytic deoxygenation of fatty acids and their derivatives. Energ. Fuels21(1),30–41 (2007).
  • Do PT, Chiappero M, Lobban LL, Resasco DE. catalytic deoxygenation of methyl-octanoate and methyl-stearate on Pt/Al2O3. Catal. Lett.130(1–2),9–18 (2009).
  • Rozmysłowicz B, Mäki-Arvela P, Lestari S et al. Catalytic deoxygenation of tall oil fatty acids over a palladium-mesoporous carbon catalyst: a new source of biofuels. Top. Catal.53(15–18),1274–1277 (2010).
  • Morgan T, Grubb D, Santillan-Jimenez E, Crocker M. Conversion of triglycerides to hydrocarbons over supported metal catalysts. Top. Catal.53(11–12),820–829 (2010).
  • Lestari S, Mäki-Arvela P, Eränen K, Beltramini J, Max Lu GQ, Murzin DY. diesel-like hydrocarbons from catalytic deoxygenation of stearic acid over supported Pd nanoparticles on SBA-15 catalysts. Catal. Lett.134(3–4),250–257 (2009).
  • Ping EW, Wallace R, Pierson J, Fuller TF, Jones CW. Highly dispersed palladium nanoparticles on ultra-porous silica mesocellular foam for the catalytic decarboxylation of stearic acid. Microporous Mesoporous Mater.132(1–2),174–180 (2010).
  • Hancsók J, Krár M, Magyar S, Boda L, Holló A, Kalló D. Investigation of the production of high cetane number bio gas oil from pre-hydrogenated vegetable oils over Pt/HZSM-22/Al2O3. Microporous Mesoporous Mater.101(1–2),148–152 (2007).
  • Lestari S, Mäki-Arvela P, Bernas H et al. catalytic deoxygenation of stearic acid in a continuous reactor over a mesoporous carbon-supported Pd catalyst. Energ. Fuels23(8),3842–3845 (2009).
  • Danuthai T, Jongpatiwut S, Rirksomboon T, Osuwan S, Resasco DE. Conversion of methylesters to hydrocarbons over an H-ZSM5 zeolite catalyst. Appl. Catal. A361(1–2),99–105 (2009).
  • Sooknoi T, Danuthai T, Lobban LL, Mallinson R, Resasco DE. Deoxygenation of methylesters over CsNaX. J. Catal.258(1),199–209 (2008).
  • Sang OY. Biofuel production from catalytic cracking of palm oil. Energ. Sources A25(9),859–869 (2003).
  • Quirino RL, Tavares AP, Peres AC, Rubim JC, Suarez PAZ. Studying the influence of alumina catalysts doped with tin and zinc oxides in the soybean oil pyrolysis reaction. J. Am. Oil Chem. Soc.86(2),167–172 (2008).
  • Knežević D, Schmiedl D, Meier D, Kersten S, van Swaaij W. High-throughput screening technique for conversion in hot compressed water: quantification and characterization of liquid and solid products. Ind. Eng. Chem. Res.46(6),1810–1817 (2007).
  • Hammerschmidt A, Boukis N, Hauer E et al. Catalytic conversion of waste biomass by hydrothermal treatment. Fuel90(2),555–562 (2011).
  • Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ. Prog. Sust. Energ.28(3),441–449 (2009).
  • Aho A, Kumar N, Lashkul AV et al. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel89(8),1992–2000 (2010).
  • Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel87(12),2493–2501 (2008).
  • Valle B, Gayubo AG, Alonso A, Aguayo AT, Bilbao J. Hydrothermally stable HZSM-5 zeolite catalysts for the transformation of crude bio-oil into hydrocarbons. Appl. Catal. A100(1–2),318–327 (2010).
  • de MiguelMercader F, Groeneveld MJ, Kersten SRA, Way NWJ, Schaverien CJ, Hogendoorn J. Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units. Appl. Catal. B96(1–2),57–66 (2010).
  • Mullen CA, Boateng AA. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process. Technol.91(11),1446–1458 (2010).
  • Carlson TR, Tompsett GA, Conner WC, Huber GW. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top. Catal.52(3),241–252 (2009).
  • Ferrari M, Maggi R, Delmon B, Grange P. Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygenation activity of a CoMo/carbon catalyst. J. Catal.198(1),47–55 (2001).
  • Gutierrez A, Domine M, Solantausta Y. Co-processing of upgraded bio-liquids in standard refinery units – fundamentals. Presented at: 15th European Biomass Conference & Exhibition. Berlin, Germany, 7–11 May 2007.
  • Şenol O, Ryymin E-M, Viljava T-R, Krause AOI. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic and aliphatic oxygenates on sulphided catalysts. J. Mol. Catal. A Chem.277(1–2),107–112 (2007).
  • French RJ, Hrdlicka J, Baldwin R. Mild hydrotreating of biomass pyrolysis oils to produce a suitable refinery feedstock. Environ. Prog. Sustainable Energ.29(2),142–150 (2010).
  • Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gärtner CA, Dumesic JA. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science322(5900),417–421 (2008).
  • West RM, Kunkes EL, Simonetti DA, Dumesic J. Catalytic conversion of biomass-derived carbohydrates to fuels and chemicals by formation and upgrading of mono-functional hydrocarbon intermediates. Catal. Today147(2),115–125 (2009).
  • Li N, Huber GW. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2-Al2O3: identification of reaction intermediates. J. Catal.270(1),48–59 (2010).
  • Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic J. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature447(7147),982–985 (2007).
  • Chheda J, Dumesic J. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal. Today123(1–4),59–70 (2007).
  • Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA. Integrated catalytic conversion of g-valerolactone to liquid alkenes for transportation fuels. Science327(5969),1110–1114 (2010).
  • Gärtner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA. Catalytic coupling of carboxylic acids by ketonization as a processing step in biomass conversion. J. Catal.266(1),71–78 (2009).
  • Gürbüz EI, Kunkes EL, Dumesic JA. Dual-bed catalyst system for C-C coupling of biomass-derived oxygenated hydrocarbons to fuel-grade compounds. Green Chem.12(2),223–227 (2010).
  • Gärtner CA, Serrano-Ruiz JC, Braden DJ, Dumesic J. Catalytic upgrading of bio-oils by ketonization. ChemSusChem2(12),1121–1124 (2009).
  • Gürbüz EI, Kunkes EL, Dumesic J. Integration of C-C coupling reactions of biomass-derived oxygenates to fuel-grade compounds. Appl. Catal. B94(1–2),134–141 (2010).
  • Serrano-Ruiz JC, Braden DJ, West RM, Dumesic J. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Appl. Catal. B100(1–2),184–189 (2010).
  • McKendry P. Energy production from biomass (part 3): gasification technologies. Bioresour. Technol.83(1),55–63 (2002).
  • Moilanen A, Nasrullah M, Kurkela E. The effect of biomass feedstock type and process parameters on achieving the total carbon conversion in the large scale fluidized bed gasification of biomass. Environ. Prog. Sust. Energ.28(3),355–359 (2009).
  • Kunkes E, Simonetti D, Dumesic J et al. The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts. J. Catal.260(1),164–177 (2008).
  • Rass-Hansen J, Christensen CH, Sehested J, Helveg S, Rostrup-Nielsen JR, Dahl S. Renewable hydrogen: carbon formation on Ni and Ru catalysts during ethanol steam-reforming. Green Chem.9(9),1016–1021 (2007).
  • Matsumura Y, Minowa T, Potic B et al. Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy29(4),269–292 (2005).
  • Campoy M, Gómez-Barea A, Villanueva AL, Ollero P. Air-steam gasification of biomass in a fluidized bed under simulated autothermal and adiabatic conditions. Ind. Eng. Chem. Res.47(16),5957–5965 (2008).
  • Wolfesberger U, Aigner I, Hofbauer H. Tar content and composition in producer gas of fluidized bed gasification of wood – influence of temperature and pressure. Environ. Prog. Sust. Energ.28(3),372–379 (2009).
  • Zwart RWR, Van der Drift A, Bos A, Visser HJM, Cieplik MK, Könemann HWJ. Oil-based gas washing-flexible tar removal for high-efficient production of clean heat and power as well as sustainable fuels and chemicals. Environ. Prog. Sust. Energ.28(3),324–335 (2009).
  • Pope CJ, Marrone PA, Yeh BV. Thermodynamic driving forces for postgasification carbon deposition. Environ. Prog. Sus. Energ.29(2),151–162 (2010).
  • Torres W, Pansare S, Goodwin Jr JG. Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal. Rev.49(4),407–456 (2007).
  • Simonetti DA, Rass-Hansen J, Kunkes EL, Soares RR, Dumesic JA. Coupling of glycerol processing with Fischer–Tropsch synthesis for production of liquid fuels. Green Chem.9(10),1073–1083 (2007).
  • Gamba S, Pellegrini La, Calemma V, Gambaro C. Liquid fuels from Fischer–Tropsch wax hydrocracking: isomer distribution. Catal. Today.156(1–2),58–64 (2010).
  • Tavasoli A, Trépanier M, Dalai AK, Abatzoglou N. Effects of confinement in carbon nanotubes on the activity, selectivity, and lifetime of Fischer–Tropsch Co/carbon nanotube catalysts. J. Chem. Eng.55(8),2757–2763 (2011).
  • Tavasoli A, Trépanier M, Malek Abbaslou RM, Dalai AK, Abatzoglou N. Fischer–Tropsch synthesis on mono- and bimetallic Co and Fe catalysts supported on carbon nanotubes. Fuel Process. Technol.90(12),1486–1494 (2009).
  • Ma W, Kugler EL, Wright J, Dadyburjor DB. Mo- Fe catalysts supported on activated carbon for synthesis of liquid fuels by the Fischer–Tropsch process: effect of mo addition on reducibility, activity, and hydrocarbon selectivity. Energ. Fuels20(6),2299–2307 (2006).
  • Herranz T, Rojas S, Perezalonso F, Ojeda M, Terreros P, Fierro J. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas. J. Catal.243(1),199–211 (2006).
  • Trepanier M, Tavasoli A, Dalai A, Abatzoglou N. Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer–Tropsch synthesis. Appl. Catal. A353(2),193–202 (2009).
  • Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer–Tropsch iron catalyst. J. Am. Chem. Soc.130(29),9414–9419 (2008).
  • Liu S, Gujar AC, Thomas P, Toghiani H, White MG. Synthesis of gasoline-range hydrocarbons over Mo/HZSM-5 catalysts. Appl. Catal. A357(1),18–25 (2009).
  • Christensen JM, Mortensen PM, Trane R, Jensen PA, Jensen AD. Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide. Appl. Catal. A366(1),29–43 (2009).
  • Durham E, Zhang S, Roberts C. Diesel-length aldehydes and ketones via supercritical Fischer Tropsch synthesis on an iron catalyst. Appl. Catal. A386(1–2),65–73 (2010).
  • Kintisch E. The greening of synfuels. Science320(5874),306–308 (2008).
  • Henrich E, Dahmen N, Dinjus E. Cost estimate for biosynfuel production via biosyncrude gasification. Biofuels Bioprod. Biorefin.3(1),28–41 (2009).
  • Knothe G. Biodiesel and renewable diesel: a comparison. Progress Energ. Combust. Science36(3), 36, 364–373 (2010).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.