2,461
Views
389
CrossRef citations to date
0
Altmetric
Review

Enzymatic hydrolysis of cellulosic biomass

, , &
Pages 421-449 | Published online: 09 Apr 2014

Bibliography

  • Wyman CE. Twenty years of trials, tribulations, and research progress in bioethanol technology selected key events along the way. Appl. Biochem. Biotechnol.91–93,5–21 (2001).
  • Reese ET, Mandels M. Degradation of cellulose and its derivatives. Enzymic degradation. High Polymers5(5),1079–1094 (1971).
  • Wright JD. Ethanol from biomass by enzymatic-hydrolysis. Chem. Eng. Prog.84(8),62–74 (1988).
  • Wright JD. Ethanol from lignocellulose: an overview. Energ. Prog.8(2),71–78 (1988).
  • Montencourt BS, Kelleher TJ, Eveleigh DE. Biochemical nature of cellulases from mutants of Trichoderma reesei. Biotechnol. Bioeng. Symp.10,15–26 (1980).
  • Spindler DD, Wyman CE, Grohmann K, Mohagheghi A. Simultaneous saccharification and fermentation of pretreated wheat straw to ethanol with selected yeast strains and β-glucosidase supplementation. Appl. Biochem. Biotechnol.21,529–540 (1988).
  • American Chemical Society. Novozymes, DOE claim cost cut. Chemical and Engineering News, 10 (2005).
  • American Institute of Chemical Engineering. Genencor makes strides in the conversion of biomass to ethanol. Chem. Eng. Prog.15 (2004).
  • Wooley R, Ruth M, Glassner D, Sheehan J. Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol. Prog.15,794–803 (1999).
  • Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis: Current and Futuristic Scenarios. National Renewable Energy Laboratory, Golden, CO, USA (1999).
  • Aden A, Ruth M, Ibsen K et al. Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. In: National Renewable Energy Laboratory Technical Report # NREL/TP-510–32438. National Renewable Energy Laboratory, Golden, CO, USA (2002)
  • Wyman CE. What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol.25(4),153–157 (2007).
  • Wingren A, Galbe M, Roslander C, Rudolf A, Zacchi G. Effect of reduction in yeast and enzyme concentrations in a simultaneous-saccharification-and-fermentation-based bioethanol process. Technical and economic evaluation. Appl. Biochem. Biotechnol.,121–124,485–499 (2005).
  • Himmel ME, Ruth MF, Wyman CE. Cellulase for commodity products from cellulosic biomass. Curr. Opin. Biotechnol,10(4),358–364 (1999).
  • Himmel ME. biomass recalcitrance: engineering plants and enzymes for biofuels production. Science316(5827),982 (2007).
  • Yang B, Wyman CE. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng.94(4),611–617 (2006).
  • Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN. Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem.54(16),5806–5813 (2006).
  • Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol.25(7),759–761 (2007).
  • Chen F, Reddy MSS, Temple S, Jackson L, Shadle G, Dixon RA. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.). Plant J.48(1),113–124 (2006).
  • Argyropoulos DS, Liu Y. The role and fate of lignin’s condensed structures during oxygen delignification. J. Pulp Paper Sci.26(3),107–113 (2000).
  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. Coordinated development of leading biomass pretreatment technologies. Bioresource Technol.96(18),1959–1966 (2005).
  • Morris VJ, Kirby AR, Gunning AP. Atomic Force Microscopy for Biologists. Imperial College Press, London, UK (2000).
  • Kirby AR, Gunning AP, Waldron KW, Morris VJ, Ng A. Visualization of plant cell walls by atomic force microscopy. Biophys. J.70(3),1138–1143 (1996).
  • Thimm JC, Burritt DJ, Ducker WA, Melton LD. Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta212(1),25–32 (2000).
  • Ding S-Y, Himmel ME. The maize primary cell wall microfibril: a new model derived from direct visualization. J. Agric. Food Chem.54(3),597–606 (2006).
  • Himmel ME, Ding S-Y, Johnson DK et al. biomass recalcitrance: engineering plants and enzymes for biofuels production. Science315(5813),804–807 (2007).
  • Harris D, Bulone V, Ding S-Y, De Bolt S. Tools for cellulose analysis in plant cell walls. Plant Physiol.153(2),420–426 (2010).
  • Ding S-Y, Himmel ME. Anatomy and ultrastructure of maize cell walls: an example of energy plants. In: Biomass Recalcitrance, Deconstructing the Plant Cell Wall for Bioenergy. Himmel ME (Ed.). Blackwell Publishing Ltd., Oxford, UK 38–60 (2008).
  • Fan LT, Lee Y-H, Beardmore DH. Major chemical and physical features of cellulosic materials as substrates for enzymic hydrolysis. Adv. Biochem. Eng.14,101–117 (1980).
  • Lee Y-H, Fan LT. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II). Analysis of extended hydrolysis times. Biotechnol. Bioeng.25,939–966 (1983).
  • Ghose TK, Bisaria VS. Studies on the mechanism of enzymatic hydrolysis of cellulosic substances. Biotechnol. Bioeng.21,131–146 (1979).
  • Wood TM, McCrae SI, Bhat KM. The mechanism of fungal cellulase action. Synergism between enzyme components of Penicillium pinophilum cellulase in solubilizing hydrogen-bond ordered cellulose. Biochem. J.260,37–43 (1989).
  • Fan LT, Gharpuray MM, Lee Y. Evaluation of pretreatments for enzymatic conversion of agricultural residues. Biotechnol. Bioeng. Symposium11,29–45 (1981).
  • Sasaki T, Tanaka T, Nanbu N, Sato Y, Kainuma K. Correlation between x-ray diffraction measurements of cellulose crystalline structure and the susceptibility of microbial cellulase. Biotechnol. Bioeng.21,1031–1042 (1979).
  • Sinitsyn AP, Gusakov AV, Vlasenko EY. Effect of structural and physico-chemical features of cellulosic substrates on the efficiency of enzymatic hydrolysis. Appl. Biochem. Biotechnol.30,43–59 (1991).
  • Grethlein HE. The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates. Nat. Biotechnol.3,155–160 (1985).
  • Puri VP. Effect of crystallinity and degree of polymerization of cellulose on enzymatic saccharification. Biotechnol. Bioeng.26,1219–1222 (1984).
  • Sannigrahi P, Miller SJ, Ragauskas AJ. Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in Loblolly pine. Carbohydr. Res.345(7),965–970 (2010).
  • Ooshima H, Sakata M, Harano Y. Adsorption of cellulase from Trichoderma viride on cellulose. Biotechnol. Bioeng.25(12),3103–3114 (1983).
  • Paralikar KM, Betrabet SM. Electron-diffraction technique for determination of cellulose crystallinity. J. Appl. Polym. Sci.21(4),899–903 (1977).
  • Puls J, Wood TM. The degradation pattern of cellulose by extracellular cellulases of aerobic and anaerobic microorganisms. Bioresource Technol.36(1),15–19 (1991).
  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. FEBS J.277(6),1571–1582 (2010).
  • Mansfield SD, Mooney C, Saddler JN. Substrate and enzyme characteristics that limit cellulose hydrolysis. Bio. Prog.15(5),804–816 (1999).
  • Converse AO. Substrate factors limiting enzymatic hydrolysis. In: Bioconversion of Forest and Agricultural Plant Residue. Saddler JN (Ed.). CAB International, Wallingford, UK 93–106 (1993).
  • Kim S, Holtzapple MT. Effect of structural features on enzyme digestibility of corn stover. Bioresour. Technol.97(4),583–591 (2006).
  • Rivers DB, Emert GH. Factors affecting the enzymatic hydrolysis of municipal-solid-waste components. Biotechnol. Bioeng.31(3),278–281 (1988).
  • Rivers DB, Emert GH. Factors affecting the enzymatic hydrolysis of bagasse and rice straw. Biol. Wastes26,85–95 (1988).
  • Puri VP, Pearce GR. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis. Biotechnol. Bioeng.28(4),480–485 (1986).
  • Gharpuray MM, Lee YH, Fan LT. Pretreatment of wheat straw for cellulose hydrolysis. Proceedings of the 11th Annual Biochemical Engineering Symposium. 1–10 (1981).
  • Lynd LR. Overview and evaluation of fuel ethanol from cellulosic biomass : technology, economics, the environment, and policy. Ann. Rev. Energ. Environ.21,403–465 (1996).
  • Zhang Y-HP, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng.88(7),797–824 (2004).
  • Zhang YH, Lynd LR. Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis. Biomacromolecules6(3),1510–1515 (2005).
  • Pinto R, Carvalho J, Mota M, Gama M. Large-scale production of cellulose-binding domains. Adsorption studies using CBD-FITC conjugates. Cellulose13(5),557–569 (2006).
  • Ryu DDY, Lee SB. Enzymic hydrolysis of cellulose: determination of kinetic parameters. Chem. Eng. Comm.45(1–6),119–134 (1986).
  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol. Bioeng.98(1),112–122 (2007).
  • Ding H, Xu F. Productive cellulase adsorption on cellulose. ACS Symp. Ser.889,154–169 (2004).
  • Banka RR, Mishra S. Adsorption properties of the fibril forming protein from Trichoderma reesei. Enzyme Microb. Technol.31(6),784–793 (2002).
  • Nidetzky B, Hayn M, Macarron R, Steiner W. Synergism of Trichoderma reesei cellulases while degrading different celluloses. Biotechnol. Lett.15(1),71–76 (1993).
  • Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T. Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J. Ferment. Bioeng.84(4),300–306 (1997).
  • Henrissat B, Driguez H, Viet C, Schuelein M. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat. Biotechnol.3(8),722–726 (1985).
  • Valjamae PS, Nutt V, Pettersson A, Johansson G. Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I. Eur. J. Biochem.266(2),327–334 (1999).
  • Valjamae P. The kinetics of cellulose enzymatic hydrolysis: implications of the synergism between enzymes. PhD thesis. Uppsala University, Uppsala, Sweden (2002).
  • Hoshino E, Kanda T. Scope and mechanism of cellulase action on different cellulosic substrates. Oyo Toshitsu Kagaku44(1),87–104 (1997).
  • Tarantili PA, Koullas DP, Christakopoulos P, Kekos D, Koukios EG, Macris BJ. Cross-synergism in enzymic hydrolysis of lignocellulosics: mathematical correlations according to a hyperbolic model. Biomass Bioenerg.10(4),213–219 (1996).
  • Henrissat B. Cellulases and their interaction with cellulose. Cellulose1,169–196 (1994).
  • Kanda T, Wakabayashi K, Nisizawa K. Modes of action of exo- and endo-cellulases in the degradation of celluloses I and II. J. Biochem.87(6),1635–1639 (1980).
  • Igarashi K, Wada M, Hori R, Samejima M. Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface. FEBS J.273(13),2869–2878 (2006).
  • Igarashi K, Wada M, Samejima M. Enzymatic kinetics at a solid-liquid interface: hydrolysis of crystalline celluloses by cellobiohydrolase. Cellulose Comm.13(4),173–177 (2006).
  • Igarashi K, Wada M, Samejima M. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase. FEBS J.274(7),1785–1792 (2007).
  • Mizutani C, Sethumadhavan K, Howley P, Bertoniere N. Effect of a nonionic surfactant on Trichoderma cellulase treatments of regenerated cellulose and cotton yarns. Cellulose9(1),83–89 (2002).
  • Gama FM, Mota M. Enzymic hydrolysis of cellulose. (II): x-ray photoelectron spectroscopy studies on cellulase adsorption. Effect of the surfactant Tween 85. Biocatal. Biotransform.15(3),237–250 (1997).
  • von Ossowski I, Stahlberg J, Koivula A et al. Engineering the exo-loop of Trichoderma reesei cellobiohydrolase, Cel7A. A comparison with Phanerochaete chrysosporium Cel7D. J. Mol. Biol.333(4),817–829 (2003).
  • Kipper K, Valjamae P, Johansson G. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as ‘burst’ kinetics on fluorescent polymeric model substrates. Biochem. J.385(2),527–535 (2005).
  • Kanda T, Wakabayashi K, Nisizawa K. Synergistic action of two different types of endo-cellulase components from Irpex lacteus (Polyporus tulipiferae) in the hydrolysis of some insoluble celluloses. J. Biochem.79(5),997–1005 (1976).
  • Mansfield SD, Meder R. Cellulose hydrolysis – the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose10(2),159–169 (2003).
  • Kleman-Leyer KM, Siika-Aho M, Teeri TT, Kirk TK. The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl. Environ. Microbiol.62(8),2883–2887 (1996).
  • Eremeeva T, Bikova T, Eisimonte M, Viesturs U, Treimanis A. Fractionation and molecular characteristics of cellulose during enzymatic hydrolysis. Cellulose8(1),69–79 (2001).
  • Pala H, Mota M, Gama FM. Enzymatic depolymerisation of cellulose. Carbohyd. Polymers68(1),101–108 (2007).
  • Hilden L, Valjamae P, Johansson G. Surface character of pulp fibres studied using endoglucanases. J. Biotechnol.118(4),386–397 (2005).
  • Hallac BB, Ragauskas AJ. Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod. Biorefin.5(2),215–225 (2011).
  • Zhang YH, Lynd LR. A functionally based model for hydrolysis of cellulose by fungal cellulase. Biotechnol. Bioeng.94(5),888–898 (2006).
  • Nidetzky B, Zachariae W, Gercken G, Hayn M, Steiner W. Hydrolysis of cellooligosaccharides by Trichoderma reesei cellobiohydrolases: experimental data and kinetic modeling. Enzyme Microb. Technol.16(1),43–52 (1994).
  • Lee YH, Fan LT. Properties and mode of action of cellulase. Adv. Biochem. Eng.17,101–129 (1980).
  • Wilson CA, McCrae SI, Wood TM. Characterisation of a β-glucosidase from the anaerobic rumen fungus Neocallimastix frontalis with particular reference to attack on cello-oligosaccharides. J. Biotechnol.37(3),217–227 (1994).
  • Okazaki M, Moo-Young M. Kinetics of enzymic hydrolysis of cellulose: analytical description of a mechanistic model. Biotechnol. Bioeng.20(5),637–663 (1978).
  • Okazaki M, Miura Y, Moo-Young M. Synergistic effect of enzymic hydrolysis of cellulose. Adv. Biotechnol.2,3–8 (1981).
  • Kaplan AM, Mandels M, Pillion E, Greenberger M. Resistance of weathered cotton cellulose to cellulase action. Appl. Microbiol.20(1),85–93 (1970).
  • Teeri TT, Koivula A, Linder M et al. Modes of action of two Trichoderma reesei cellobiohydrolases. Prog. Biotechnol.10,211–224 (1995).
  • Divne C, Ståhlberg J, Teeri TT, Alwyn Jones T. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J. Mol. Biol.275,309–325 (1998).
  • Teeri TT. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotech.15,160–167 (1997).
  • Beldman G, Searle-Van Leeuwen MF, Rombouts FM, Voragen FG. The cellulase of Trichoderma viride. Purification, characterization and comparison of all detectable endoglucanases, exoglucanases and β-glucosidases. Eur. J. Biochem.146(2),301–308. (1985).
  • Houghton J, Weatherwax S, Ferrell J. Breaking the Biological Barriers to Cellulosic Ethanol: a Joint Research Agenda, DOE/SC-0095. US Department of Energy, Washington, DC, USA (2006).
  • Ding S-Y, Xu Q, Ali MK et al. Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. Biotechniques41(4),435–436,438,440,441–443 (2006).
  • Liu Y-S, Zeng Y, Luo Y et al. Does the cellulose-binding module move on the cellulose surface? Cellulose16(4),587–597 (2009).
  • Xu Q, Tucker MP, Arenkiel P et al. Labeling the planar face of crystalline cellulose using quantum dots directed by type-I carbohydrate-binding modules. Cellulose16(1),19–26 (2009).
  • Cowling EB. Physical and chemical constraints in hydrolysis of cellulose and lignocellulosic materials. Biotechnol. Bioeng. (5), 163–181 (1975).
  • Cowling EB, Kirk TK. Properties of cellulose and lignocellulosic materials as substrates for enzymatic conversion processes. Biotechnol. Bioeng. (6), 95–123 (1976).
  • King KW. Enzymic degradation of crystalline hydrocellulose. Biochem. Biophys. Res. Comm.24(3),295 (1966).
  • Mandels M, Kostick J, Parizek R. Use of adsorbed cellulase in the continuous conversion of cellulose to glucose. J. Polymer Sci.36,445–459 (1971).
  • Peitersen N, Medeiros J, Mandels M. Adsorption of Trichoderma cellulase on cellulose. Biotechnol. Bioeng.19(7),1091–1094 (1977).
  • Stone J, Scallan A, Donefer E, Ahlgren E. Digestibility as a simple function of a molecule of a similar size to a cellulase enzyme. Adv. Chem. Series95,219–241 (1969).
  • Grethlein HE. Pretreatment for enhanced hydrolysis of cellulosic biomass. Biotechnol. Adv.2(1),43–62 (1984).
  • Wong KKY, Deverell KF, Mackie KL, Clark TA, Donaldson LA. The relationship between fiber-porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol. Bioeng.31(5),447–456 (1988).
  • Suurnakki A, Li TQ, Buchert J et al. Effects of enzymic removal of xylan and glucomannan on the pore size distribution of kraft fibers. Holzforschung51(1),27–33 (1997).
  • Zeng M, Mosier NS, Huang CP, Sherman DM, Ladisch MR. Microscopic examination of changes of plant cell structure in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnol. Bioeng.97(2),265–278 (2007).
  • Sangseethong K, Meunier-Goddik L, Tantasucharit U, Liaw ET, Penner MH. Rationale for particle size effect on rates of enzymatic sacchariification of microcrystalline cellulose. J. Food Biochem.22(4),321–330 (1998).
  • Dasari R, Eric Berson R. The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl. Biochem. Biotechnol.137–140(1),289–299 (2007).
  • Wen Z, Liao W, Chen S. Hydrolysis of animal manure lignocellulosics for reducing sugar production. Bioresour. Technol.91(1),31–39 (2004).
  • Lin KW, Ladisch MR, Voloch M, Patterson JA, Noller CH. Effect of pretreatments and fermentation on pore size in cellulosic materials. Biotechnol. Bioeng.27(10),1427–1433 (1985).
  • Gama FM, Teixeira JA, Mota M. Cellulose morphology and enzymic reactivity: a modified solute exclusion technique. Biotechnol. Bioeng.43(5),381–387 (1994).
  • Ishizawa CI, Davis MF, Schell DF, Johnson DK. Porosity and its effect on the digestibility of dilute sulfuric acid pretreated corn stover. J. Agric. Food Chem.55(7),2575–2581 (2007).
  • Goel SC, Ramachandran KB. Studies on the adsorption of cellulase on lignocellulosics. J. Ferment. Technol.61(3),281–286 (1983).
  • Peters LE, Walker LP, Wilson DB, Irwin DC. The impact of initial particle size on the fragmentation of cellulose by the cellulase of Thermomonospora fusca. Bioresour. Technol.35(3),313–319 (1991).
  • Goel SC, Ramachandran KB. Comparison of the rates of enzymatic hydrolysis of pretreated rice straw and bagasse with celluloses. Enzyme Microb. Technol.5(4),281–284 (1983).
  • Chang VS, Burr B, Holtzapple MT. Lime pretreatment of switchgrass. Appl. Biochem. Biotechnol.63–65,3–19 (1997).
  • Mooney CA, Mansfield SD, Touhy MG, Saddler JN. The effect of initial pore volume and lignin content on the enzymic hydrolysis of softwoods. Bioresour. Technol.64(2),113–119 (1998).
  • Ramos LP, Nazhad MM, Saddler JN. Effect of enzymatic hydrolysis on the morphology and fine structure of pretreated cellulosic residues. Enz. Microb. Technol.15,821–831 (1993).
  • Nutor JRK, Converse AO. The effect of enzyme and substrate levels on the specific hydrolysis rate of pretreated poplar wood. Appl. Biochem. Biotechnol.28–29,757–772 (1991).
  • Wang SS, Converse AO. On the use of enzyme adsorption and specific hydrolysis rate to characterize thermal-chemical pretreatment. Appl. Biochem. Biotechnol.34–35,61–74 (1991).
  • Eriksson T, Karlsson J, Tjerneld F. A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl. Biochem. Biotechnol.101,41–60 (2002).
  • Caminal G, Lopez-Santin J, Sola C. Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnol. Bioeng.27,1282–1290 (1985).
  • Converse AO, Ooshima H, Burns DS. Kinetics of enzymatic hydrolysis of lignocellulosic materials based on surface area of cellulose accessible to enzyme and enzyme adsorption on lignin and cellulose. Appl. Biochem. Biotechnol.24–25,67–73 (1990).
  • Gonzalez G, Caminal G, De Mas C, Lopez-Santin J. A kinetic model for pretreated wheat straw saccharification by cellulase. J. Chem. Technol. Biotechnol.44,275–288 (1989).
  • Holtzapple M, Cognata M, Shu Y, Hendrickson C. Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol. Bioeng.36,275–287 (1990).
  • Gusakov AV, Sinitsyn AP. A theoretical analysis of cellulase product inhibition: effect of cellulase binding constant, enzyme/substrate ratio, and β-glucosidase activity on the inhibition pattern. Biotechnol. Bioeng.40(6),663–671 (1992).
  • Gan Q, Allen SJ, Taylor G. Kinetic dynamics in heterogeneous enzymatic hydrolysis of cellulose: an overview, an experimental study and mathematical modelling. Process. Biochem.38(7),1003–1018 (2003).
  • Todorovic R, Grujic S, Matavulj M. Effect of reaction end-products on the activity of cellulolytic enzymes and xylanase of Trichoderma harzianum. Microbiol. Lett.36(143–144),113–119 (1987).
  • Kadam KL, Rydholm EC, McMillan JD. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass. Biotechnol. Prog.20(3),698–705 (2004).
  • Converse AO, Matsuno R, Tanaka M, Taniguchi M. A model of enzyme adsorption and hydrolysis of microcrystalline cellulose with slow deactivation of the adsorbed enzyme. Biotechnol. Bioeng.32,38–45 (1988).
  • Gusakov AV, Sinitsyn AP, Klesov AA. Factors affecting the enzymic hydrolysis of cellulose in batch and continuous reactors: computer simulation and experiment. Biotechnol. Bioeng.29,906–910 (1987).
  • Sinitsyn A, Mitkevich O, Klesov A. Inactivation of cellulolytic enzymes by stirring and their stabilization by cellulose. Prikladnaya Biokhimiya i Mikrobiologiya22(6),759–765 (1986).
  • Mukataka S, Tada M, Takahashi J. Effects of agitation on enzymic hydrolysis of cellulose in a stirred-tank reactor. J. Ferm. Technol.61(6),615–621 (1983).
  • Reese E. Protection of Trichoderma reesei cellulase from inactivation due to shaking. International Symposium on Solution Behavior of Surfactants: Theoretical Application Aspects. 1487–1504 (1982).
  • Ooshima H, Burns DS, Converse AO. Adsorption of cellulase from Trichoderma reesei on cellulose and lignaceous residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnol. Bioeng. Symp.36,446–452 (1990).
  • Sutcliffe R, Saddler JN. The role of lignin in the adsorption of cellulases during enzymatic treatment of lignocellulosic material. Biotechnol. Bioeng. Symp.17,749–762 (1986).
  • Desai SG, Converse AO. Substrate reactivity as a function of the extent of reaction in the enzymatic hydrolysis of lignocellulose. Biotechnol. Bioeng.56(6),650–655 (1997).
  • Zhang S, Wolfgang DE, Wilson DB. Substrate heterogeneity causes the nonlinear kinetics of insoluble cellulose hydrolysis. Biotechnol. Bioeng.66,35–41 (1999).
  • Nidetzky B, Steiner W. A new approach for modeling cellulase cellulose adsorption and the kinetics of the enzymatic-hydrolysis of microcrystalline cellulose. Biotechnol. Bioeng.42(4),469–479 (1993).
  • Gusakov AV, Sinitsyn AP, Klesov AA. Kinetic model of the enzymic hydrolysis of cellulose in a column type reactor. Biotekhnologiya3,112–122 (1985).
  • Ooshima H, Kurakake M, Kato J, Harano Y. Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis. Appl. Biochem. Biotechnol.31(3),253–266 (1991).
  • Valjamae P, Sild V, Pettersson G, Johansson G. The initial kinetics of hydrolysis by cellobiohydrolases I and II is consistent with a cellulose surface erosion model. Eur. J. Biochem.253(2),469–475 (1998).
  • Yang B, Willies DM, Wyman CE. Changes in the enzymatic hydrolysis rate of avicel cellulose with conversion. Biotech. Bioeng. (2006).
  • Bommarius AS, Katona A, Cheben SE et al. Cellulase kinetics as a function of cellulose pretreatment. Metab. Eng.10(6),370–381 (2008).
  • Grohmann K, Torget R, Himmel M. Optimization of dilute acid pretreatment of biomass. Biotech. Bioeng. Symp.15,59–80 (1986).
  • Oehgren K, Bura R, Saddler J, Zacchi G. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol.98(13),2503–2510 (2007).
  • Yang B, Wyman CE. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng.86(1),88–95 (2004).
  • Zhu Y, Lee YY, Elander RT. Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl. Biochem. Biotechnol.121–124,1045–1054 (2005).
  • Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol.98(10),2034–2042 (2007).
  • Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari L. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl. Biochem. Biotechnol.117(1),1–17 (2004).
  • Allen SG, Schulman D, Lichwa J, Antal MJ, Jennings E, Elander R. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Ind. Eng. Chem. Res.40(10),2352–2361 (2001).
  • Millett MA, Baker AJ, Satter LD. Physical and chemical pretreatments for enhancing cellulose saccharification. Biotechnol. Bioeng. Symp.6,125–153 (1976).
  • Tsao GT, Ladisch M, Ladisch C, Hsu TA, Dale B, Chou T. Fermentation substrates from cellulosic materials: production of fermentable sugars from cellulosic materials. Ann. Rep. Ferm. Process.2,1–21 (1978).
  • Fan LT, Lee Y, Gharpuray MM. The nature of lignocellulosics and their pretreatment for enzymatic hydrolysis. Adv. Biochem. Eng.23,157–187 (1982).
  • Dale BE, Weaver J, Byers FM. Extrusion processing for ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol.77–79,35–45 (1999).
  • Grethlein HE. Pretreatment of cellulosic biomass for enzymic hydrolysis. Energ. Biomass Wastes9,939–960 (1985).
  • Grohmann K, Mitchell DJ, Himmel ME, Dale BE, Schroeder HA. The role of ester groups in resistance of plant cell wall polysaccharides to enzymic hydrolysis. Appl. Biochem. Biotechnol.20–21,45–61 (1989).
  • Chum HL, Johnson DK, Black SK et al. Organosolv pretreatment for enzymatic hydrolysis of poplar. I. Enzyme hydrolysis of cellulosic residues. Biotechnol. Bioeng.31,643–649 (1988).
  • Yang B, Wyman CE. Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water. Bioresource Technol.99(13),5756–5762 (2008).
  • Lee YY, Iyer P, Torget RW. Dilute-acid hydrolysis of lignocellulosic biomass. Adv. Biochem. Eng. Biotechnol.65,93–115 (1999).
  • Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM. Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour. Technol.56,111–116 (1996).
  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour. Technol.96(18),2014–2018 (2005).
  • Vlasenko EY, Ding H, Labavitch JM, Shoemaker SP. Enzymic hydrolysis of pretreated rice straw. Bioresour. Technol.59(2 & 3),109–119 (1997).
  • Teixeira LC, Linden JC, Schroeder HA. Simultaneous saccharification and cofermentation of peracetic acid-pretreated biomass. Appl. Biochem. Biotechnol.84–6,111–127 (2000).
  • Kim S, Holtzapple MT. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol.96(18),1994–2006 (2005).
  • Kong F, Engler CR, Soltes EJ. Effects of cell-wall acetate, xylan backbone, and lignin on enzymic hydrolysis of aspen wood. Appl. Biochem. Biotechnol.34–35,23–35 (1992).
  • Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol.84–86,5–37 (2000).
  • Weimer PJ, Hackney JM, Jung HJ, Hatfield RD. Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora: implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability. J. Agric. Food Chem.48(5),1727–1733 (2000).
  • Pan X, Gilkes N, Saddler JN. Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung60,398–401 (2006).
  • Karlsson J, Momcilovic D, Wittgren B, Schulein M, Tjerneld F, Brinkmalm G. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers63(1),32–40 (2002).
  • Samios E, Dart RK, Dawkins JV. Preparation, characterization and biodegradation studies on cellulose acetates with varying degrees of substitution. Polymer38(12),3045–3054 (1997).
  • Jeoh T, Johnson DK, Adney WS, Himmel ME. Measuring cellulase accessibility of dilute-acid pretreated corn stover. Preprints of Symposia – American Chemical Society, Division of Fuel Chemistry50(2),673–674 (2005).
  • Qing Q, Yang B, Wyman CE. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol.101(24),9624–9630 (2010).
  • Kumar R, Wyman CE. Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol. Bioeng.102(2),457–467 (2009).
  • Fernandes AC, Fontes CMGA, Gilbert HJ, Hazlewood GP, Fernandes TH, Ferreira LMA. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Biochem. J.342(1),105–110 (1999).
  • Tenkanen M, Siika-aho M, Hausalo T, Puls J, Viikari L. Synergism of xylanolytic enzymes of Trichoderma reesei in the degradation of acetyl-4-O-methylglucuronoxylan. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry. Vienna, Austria, 11–15 June 1995.
  • Kormelink FJM, Voragen AGJ. Combined action of xylan-degrading and accessory enzymes on different glucurono-arabino xylans. Prog. Biotechnol.7,415–418 (1992).
  • Wood TM, McCrae SI. The effect of acetyl groups on the hydrolysis of ryegrass cell walls by xylanase and cellulase from Trichoderma koningii. Phytochemistry25(5),1053–1055 (1986).
  • Mitchell DJ, Grohmann K, Himmel ME, Dale BE, Schroeder HA. Effect of the degree of acetylation on the enzymic digestion of acetylated xylans. J. Wood Chem. Technol.10(1),111–121 (1990).
  • Yu P, McKinnon JJ, Maenz DD, Olkowski AA, Racz VJ, Christensen DA. Enzymic release of reducing sugars from oat hulls by cellulase, as influenced by Aspergillus ferulic acid esterase and Trichoderma xylanase. J. Agric. Food Chem.51(1),218–223 (2003).
  • Tabka MG, Herpoel-Gimbert I, Monod F, Asther M, Sigoillot JC. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb. Technol.39(4),897–902 (2006).
  • García-Aparicio M, Ballesteros M, Manzanares P, Ballesteros I, González A, José Negro M. Xylanase contribution to the efficiency of cellulose enzymatic hydrolysis of barley straw. Appl. Biochem. Biotechnol.137–140(1),353–365 (2007).
  • Murashima K, Kosugi A, Doi RH. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J. Bacteriol.185(5),1518–1524 (2003).
  • Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol.108,95–120 (2007).
  • Hespell RB, O’Bryan PJ, Moniruzzaman M, Bothast RJ. Hydrolysis by commercial enzyme mixtures of AFEX-treated corn fiber and isolated xylans. Appl. Biochem. Biotechnol.62(1),87–97 (1997).
  • Knauf M, Moniruzzaman M. Lignocellulosic biomass processing: a perspective. Int. Sugar J.106(1263),147–150 (2004).
  • Yang B, Boussaid A, Mansfield SD, Gregg DJ, Saddler JN. Fast and efficient alkaline peroxide treatment to enhance the enzymatic digestibility of steam-exploded softwood substrates. Biotechnol. Bioeng.77(6),678–684 (2002).
  • Yamamoto K, Fujii T, Sudo K, Shimizu K. Changes in cell wall structure and enzymic hydrolysis of steam exploded bamboo and bamboo grass. Baiomasu Henkan Keikaku Kenkyu Hokoku22,20–34 (1990).
  • Mansfield SD, Dickson AR, Saddler JN. Improving paper properties by a selective enzymic treatment of coarse pulp fibers. Presented at: 7th International Conference on Biotechnology in the Pulp and Paper Industry. Vancouver, BC, Canada, 16–19 June 1998.
  • Nelson R, Oliver DW. Study of cellulose structure and its relation to reactivity. J. Polymer Sci.36,305–320 (1971).
  • Schwald W, Chan M, Brownell HH, Saddler JN. Influence of hemicellulose and lignin on the enzymic hydrolysis of wood. FEMS Symp.43,303–314 (1988).
  • Shevchenko SM. The nature of lignin from steam explosion/enzymatic hydrolysis of softwoods. Appl. Biochem. Biotechnol.77–79 (1999).
  • Torget R, Walter P, Himmel M, Grohmann K. Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl. Biochem. Biotechnol.28–9,75–86 (1991).
  • Kawamoto H, Nakatsubo F, Murakami K. Protein-adsorbing capacities of lignin samples. Mokuzai Gakkaishi38(1),81–84 (1992).
  • Lu YP, Yang B, Gregg D, Saddler JN, Mansfield SD. Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues. Appl. Biochem. Biotechnol.98,641–654 (2002).
  • Mosier N, Wyman C, Dale B et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol.96(6),673–686 (2005).
  • Yang B, Gray MC, Liu C et al. Unconventional relationships for hemicellulose hydrolysis and subsequent cellulose digestion. ACS Symp. Series889,100–125 (2004).
  • Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol.31(3),353–364 (2002).
  • Berson R, Dasari R, Hanley T. Modeling of a continuous pretreatment reactor using computational fluid dynamics. Presented at: 27th Symposium on Biotechnology for Fuels and Chemicals. Denver, CO, USA, 1–4 May 2005.
  • Fan Z, South C, Lyford K, Munsie J, van Walsum P, Lynd L. Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosys. Eng.26(2),93–101 (2003).
  • Grabber JH, Ralph J, Hatfield RD, Quideau S. P-hydroxyphenyl, guaiacyl, and syringyl lignins have similar inhibitory effects on wall degradability. J. Agric. Food Chem.45(7),2530–2532 (1997).
  • Grabber JH, Ralph J, Hatfield RD. Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J. Agric. Food Chem.46(7),2609–2614 (1998).
  • Grabber JH. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci.45(3),820–831 (2005).
  • Sewalt VJH, Ni W, Jung HG, Dixon RA. Lignin impact on fiber degradation: increased enzymic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem.45(5),1977–1983 (1997).
  • Michalowicz G, Toussaint B, Vignon MR. Ultrastructural changes in poplar cell wall during steam explosion treatment. Holzforschung45(3),175–179 (1991).
  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Bio. Prog.23(6),1333–1339 (2007).
  • Selig MJ, Vinzant TB, Himmel ME, Decker SR. The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol.155(1–3),397–406 (2009).
  • Yuldashev BT, Rabinovich ML, Rakhimov MM. Comparative study of cellulase behavior on the cellulose and lignocellulose surface during enzymic hydrolysis. Prikl. Biokhim. Mikrobiol.29(2),233–243 (1993).
  • Ishihara M, Uemura S, Hayashi N, Jellison J, Shimizu K. Adsorption and desorption of cellulase components during enzymatic hydrolysis of steamed shirakamba (Betula platyphylla Skatchev) wood. J. Ferment. Bioeng.72(2),96–100 (1991).
  • Estrada P, Acebal C, Castillon MP, Mata I, Romero D. Adsorption of cellulase from Trichoderma reesei on wheat straw. Biotechnol. Appl. Biochem.10(1),49–58 (1988).
  • Mooney CA, Mansfield SD, Tuohy MG, Saddler JN. The effect of lignin content on cellulose accessibility and enzymic hydrolysis of softwood pulps. Presented at: Biological Sciences Symposium. San Francisco, CA, USA, 19–23 October 1997.
  • Brownell HH, Saddler JN. Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis. Biotechnol. Bioeng.26,228–235 (1987).
  • Berson RE, Young JS, Hanley TR. Reintroduced solids increase inhibitor levels in a pretreated corn stover hydrolysate. Appl. Biochem. Biotechnol.129–132,612–620 (2006).
  • Alvira P, Negro MJ, Saez F, Ballesteros M. Application of a microassay method to study enzymatic hydrolysis of pretreated wheat straw. J. Chem. Technol. Biotechnol.85(9),1291–1297 (2010).
  • Dutta A, Dowe N, Ibsen KN, Schell DJ, Aden A. An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces. Biotechnol. Prog.26(1),64–72 (2010).
  • Linde M, Jakobsson E-L, Galbe M, Zacchi G. Steam pretreatment of dilute H2SO4-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenerg.32(4),326–332 (2008).
  • Oehgren K, Bura R, Lesnicki G, Saddler J, Zacchi G. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process. Biochem.42(5),834–839 (2007).
  • Sipos B, Reczey J, Somorai Z, Kadar Z, Dienes D, Reczey K. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl. Biochem. Biotechnol.153(1–3),151–162 (2009).
  • Kim TH, Lee YY. Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Appl. Biochem. Biotechnol.137–140,81–92 (2007).
  • Zhu Y, Kim TH, Lee YY, Chen R, Elander RT. Enzymatic production of xylooligosaccharides from corn stover and corn cobs treated with aqueous ammonia. Appl. Biochem. Biotechnol.129–132,586–598 (2006).
  • Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol.74(1),17–24 (2000).
  • Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog.20(1),200–206 (2004).
  • Kim TH, Lee YY, Sunwoo C, Kim JS. Pretreatment of corn stover by low-liquid ammonia recycle percolation process. Appl. Biochem. Biotechnol.133(1),41–57 (2006).
  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. Deactivation of cellulases by phenols. Enzyme Microb. Technol.48(1),54–60 (2011).
  • Xiao Z, Zhang X, Gregg David J, Saddler John N. Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol.113–116, 1115–1126 (2004).
  • Hodge DB, Karim MN, Schell DJ, McMillan JD. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresour. Technol.99(18),8940–8948 (2008).
  • Berlin A, Balakshin M, Gilkes N et al. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J. Biotechnol.125(2),198–209 (2006).
  • Excoffier G, Toussaint B, Vignon MR. Saccharification of steam-exploded poplar wood. Biotechnol. Bioeng.38(11),1308–1317 (1991).
  • Sewalt VJH, Ni WT, Jung HG, Dixon RA. Lignin impact on fiber degradation: increased enzymatic digestibility of genetically engineered tobacco (Nicotiana tabacum) stems reduced in lignin content. J. Agric. Food Chem.45(5),1977–1983 (1997).
  • Sineiro J, Dominguez H, Nunez MJ, Lema JM. Hydrolysis of microcrystalline cellulose by cellulolytic complex of Trichoderma reesei in low-moisture media. Enzyme Microb. Technol.17(9),809–815 (1995).
  • Akin DE. Plant cell wall aromatics: influence on degradation of biomass. Biofuels Bioprod. Biorefin.2(4),288–303 (2008).
  • Ximenes EA, Dien BS, Ladisch MR, Mosier N, Cotta MA, Li X-L. Enzyme production by industrially relevant fungi cultured on coproduct from corn dry grind ethanol plants. Appl. Biochem. Biotechnol.137–140, 171–183 (2007).
  • Kaya F, Heitmann JA, Jr., Joyce TW. Effect of dissolved lignin and related compounds on the enzymic hydrolysis of cellulose model compound. Cellulose Chem. Technol.33(3–4),203–213 (1999).
  • Mandels M, Reese ET. Inhibition of cellulases. Ann. Rev. Phytopathol.3,85–102 (1965).
  • Panagiotou G, Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng.96(2),250–258 (2007).
  • Vohra RM, Shirkot CK, Dhawan S, Gupta KG. Effect of lignin and some of its components on the production and activity of cellulase(s) by Trichoderma reesei. Biotechnol. Bioeng.22(7),1497–1500 (1980).
  • Paul SS, Kamra DN, Sastry VRB, Sahu NP, Kumar A. Effect of phenolic monomers on biomass and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nil gai (Boselaphus tragocamelus). Lett. Appl. Microbiol.36(6),377–381 (2003).
  • Makkar HPS, Dawra RK, Singh B. Protein precipitation assay for quantitation of tannins: determination of protein in tannin-protein complex. Anal. Biochem.166(2),435–439 (1987).
  • Chundawat SP, Venkatesh B, Dale BE. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. (2006).
  • Panagiotou G, Olsson L. Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol. Bioeng.96(2),250–258 (2006).
  • Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels1(2),323–341 (2010).
  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev.66(3),506–577, (2002).
  • Lynd LR, Weimer PJ, Wolfaardt G, Zhang Y-HP. Cellulose hydrolysis by Clostridium thermocellum: a microbial perspective. Cellulosome95–117 (2006).
  • Elkins JG, Raman B, Keller M. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr. Opin. Biotechnol.21(5),657–662 (2010).
  • Himmel ME, Karplus PA, Sakon J, Adney WS, Baker JO, Thomas SR. Polysaccharide hydrolase folds diversity of structure and convergence of function. Appl. Biochem. Biotechnol.63–65, 315–325 (1997).
  • Wei H, Xu Q, Taylor LE, Baker JO, Tucker MP, Ding S-Y. Natural paradigms of plant cell wall degradation. Curr. Opin. Biotechnol.20(3),330–338 (2009).
  • Bayer E, Kenig R, Lamed R. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol.156(2),818 (1983).
  • Lamed R, Setter E, Bayer E. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol.156(2),828 (1983).
  • Bayer E, Belaich J, Shoham Y, Lamed R. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Microbiology58(1),521 (2004).
  • Bégum P, Lemaire M. The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol.31(3),201–236 (1996).
  • Doi R, Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nat. Rev. Microbiol.2(7),541–551 (2004).
  • Felix C, Ljungdahl L. The cellulosome: the exocellular organelle of Clostridium. Ann. Rev. Microbiol.47(1),791–819 (1993).
  • Fontes C, Gilbert H. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Ann. Rev. Biochem.79,655–681 (2010).
  • Ljungdahl L. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. New York Acad. Sci.1125(1),308–321 (2008).
  • Vinzant TB, Adney WS, Decker SR et al. Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Appl. Biochem. Biotechnol.91–93, 99–107 (2001).
  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Walton JD. Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations. Biotechnol. Biofuels3,22 (2010).
  • Gritzali M, Brown RD, Jr. The cellulase system of Trichoderma. Relationships between purified extracellular enzymes from induced or cellulose-grown cells. Adv. Chem. Series181,237–260 (1979).
  • Ryu DY, Kim C, Mandels M. Competitive adsoprtion of cellulase components and its significance in a synergistic mechanism. Biotechnol. Bioeng.26(5),488–496 (1984).
  • Nidetzky B, Claeyssens M, Steiner W. Cellulose degradation by the major cellulases from Trichoderma reesei: synergistic interaction and competition for binding sites on cellulose. Proceedings of the 6th International Conference on Biotechnology in the Pulp and Paper Industry. Vienna, Austria, 11–15 June 1995.
  • Jeoh T, Wilson DB, Walker LP. Cooperative and competitive binding in synergistic mixtures of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A. Biotechnol. Prog.18(4),760–769 (2002).
  • Jeoh T, Wilson DB, Walker LP. Effect of cellulase mole fraction and cellulose recalcitrance on synergism in cellulose hydrolysis and binding. Biotechnol. Prog.22(1),270–277 (2006).
  • Boraston AB, McLean BW, Kormos JM et al. Carbohydrate-binding modules: diversity of structure and function. Royal Soc. Chem.246,202–211 (1999).
  • Lehtio J, Sugiyama J, Gustavsson M, Fransson L, Linder M, Teeri TT. The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc. Natl Acad. Sci. USA100(2),484–489 (2003).
  • Divne C, Stahlberg J, Reinikainen T et al. The 3-dimensional crystal-structure of the catalytic core of cellobiohydrolase-I from Trichoderma reesei. Science265(5171),524–528 (1994).
  • Wilson DB. Evidence for a novel mechanism of microbial cellulose degradation. Cellulose16(4),723–727 (2009).
  • Li Y, Irwin DC, Wilson DB. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl. Environ. Microbiol.73(10),3165–3172 (2007).
  • Mansfield S, Saddler J, Gübitz G. Characterization of endoglucanases from the brown rot fungi Gloeophyllum sepiarium and Gloeophyllum trabeum. Enzyme Microb. Technol.23(1–2),133–140 (1998).
  • Lamed R, Morag E, Mor-Yosef O, Bayer E. Cellulosome-like entities inbacteroides cellulosolvens. Curr. Microbiol.22(1),27–33 (1991).
  • Woodward J. Synergism in cellulase systems. Bioresource Technol.36(1),67–75 (1991).
  • Din N, Coutinho JB, Gilkes NR et al. Interactions of cellulases from Cellulomonas fimi with cellulose. Prog. Biotechnol.10,261–270 (1995).
  • Zverlov VV, Volkov IY, Lunina NA, Velikodvorskaya GA. Enzymes of thermophilic anaerobic bacteria hydrolyzing cellulose, xylan, and other β-glucans. Mol. Biol.33(1),89–95 (1999).
  • Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol.56(5–6),634–649 (2001).
  • Nidetzky B, Claeyssens M. Specific quantification of Trichoderma reesei cellulases in reconstituted mixtures and its application to cellulase–cellulose binding studies. Biotechnol. Bioeng.44(8),961–966 (1994).
  • Stalbrand H, Mansfield SD, Saddler JN. Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant Cellulomonas fimi β-1,4-glucanases. Appl. Environ. Microbiol.64,7, 1–6 (1998).
  • Walker L, Wilson D. Enzymatic hydrolysis of cellulose: an overview. Bioresource Technol.36(1),3–14 (1991).
  • Sprey B, Lambert C. Titration curves of cellulases from Trichoderma reesei: demonstration of a cellulase xylanase glucosidase containing complex. FEMS Microbiol. Lett.18(3),217–222 (1983).
  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain co-displaying three types of cellulolytic enzyme. Appl. Environ. Microbiol.70(2),1207 (2004).
  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A. Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. Environ. Microbiol.64(12),4857 (1998).
  • Van Tilbeurgh H, Claeyssens M, De Bruyne C. The use of 4-methylumbelliferyl and other chromophoric glycosides in the study of cellulolytic enzymes. FEBS Lett.149(1),152–156 (1982).
  • Alahuhta M, Xu Q, Bomble Y et al. The unique binding mode of the cellulosomal CBM4 from Clostridium thermocellum cellobiohydrolase A. J. Mol. Biol. (2010).
  • Matthews J, Skopec C, Mason P et al. Computer simulation studies of microcrystalline cellulose I β. Carbohydrate Res.341(1),138–152 (2006).
  • Nimlos M, Matthews J, Crowley M et al. Molecular modeling suggests induced fit of Family I carbohydrate-binding modules with a broken-chain cellulose surface. Prot. Eng. Des. Sel.20(4),179 (2007).
  • Saharay M, Guo H, Smith J, Rodrigues-Lima F. Catalytic mechanism of cellulose degradation by a cellobiohydrolase, CelS. PLoS One5(10),433–443 (2010).
  • Zhong L, Matthews J, Crowley M et al. Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose I. Cellulose15(2),261–273 (2008).
  • Zhong L, Matthews J, Hansen P et al. Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Iβ: the enzyme–substrate complex. Carbohydrate Res.344(15),1984–1992 (2009).
  • Baker J, Adney W, Nleves R, Thomas S, Wilson D, Himmel M. A new thermostable endoglucanase, Acidothermus cellulolyticus E1. Appl. Biochem. Biotechnol.45(1),245–256 (1994).
  • Baker JO, Adney WS, Thomas SR et al. Synergism between purified bacterial and fungal cellulases. ACS Symp. Ser.618,113–141 (1995).
  • Coughlan M, Moloney A, McCrae S, Wood T. Cross-synergistic interactions between components of the cellulase systems of Talaromyces emersonii, Fusarium solani, Penicillium funiculosum, and Trichoderma koningii. Biochem. Soc. Trans.15,263–264 (1987).
  • Wood T, Wilson C, McCrae S. Synergism between components of the cellulase system of the anaerobic rumen fungus Neocallimastix frontalis and those of the aerobic fungi Penicillium pinophilum and Trichoderma koningii in degrading crystalline cellulose. Appl. Microbiol. Biotechnol.41(2),257–261 (1994).
  • Breznak J, Brune A. Role of microorganisms in the digestion of lignocellulose by termites. Ann. Rev. Entomol.39(1),453–487 (1994).
  • Morrison M, Pope P, Denman S, McSweeney C. Plant biomass degradation by gut microbiomes: more of the same or something new? Curr. Opin. Biotechnol.20(3),358–363 (2009).
  • Watanabe H, Tokuda G. Cellulolytic systems in insects. Ann. Rev. Entomol.55,609–632 (2010).
  • Kamra D. Rumen microbial ecosystem. Curr. Sci.89(1),124–135 (2005).
  • Warnecke F, Luginbühl P, Ivanova N et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature450(7169),560–565 (2007).
  • Brulc J, Antonopoulos D, Berg Miller M et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl Acad. Sci.106(6),1948 (2009).
  • Izquierdo J, Sizova M, Lynd L. Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl. Environ. Microbiol.76(11),3545 (2010).
  • Bronnenmeier K, Adelsberger H, Lottspeich F, Staudenbauer WL. Affinity purification of cellulose-binding enzymes of Clostridium stercorarium. Bioseparation6(1),41–45 (1996).
  • Bronnenmeier K, Kundt K, Riedel K, Schwarz WH, Staudenbauer WL. Structure of the Clostridium stercorarium gene celY encoding the exo-1,4-β-glucanase Avicelase II. Microbiology143(3),891–898 (1997).
  • Berger E, Zhang D, Zverlov V, Schwarz W. Two noncellulosomal cellulases of Clostridium thermocellum, Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically. FEMS Microbiol. Lett.268(2),194–201 (2007).
  • Mo X, Chen C, Pang H, Feng Y, Feng J. Identification and characterization of a novel xylanase derived from a rice straw degrading enrichment culture. Appl. Microbiol. Biotechnol.87(6),2137–2146 (2010).
  • Schlüter A, Bekel T, Diaz N et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J. Biotechnol.136(1–2),77–90 (2008).
  • Paterson A, Bowers J, Bruggmann R et al. The Sorghum bicolor genome and the diversification of grasses. Nature457(7229),551–556 (2009).
  • Rubin E. Genomics of cellulosic biofuels. Nature454(7206),841–845 (2008).
  • Schnable P, Ware D, Fulton R et al. The B73 maize genome: complexity, diversity, and dynamics. Science326(5956),1112 (2009).
  • Tuskan G, Difazio S, Jansson S et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science313(5793),1596 (2006).
  • Vogel J, Garvin D, Mockler T et al. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature463(7282),763–768 (2010).
  • Martinez D, Berka R, Henrissat B et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol.26(5),553–560 (2008).
  • Martinez D, Larrondo L, Putnam N et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol.22(6),695–700 (2004).
  • Pel H, de Winde J, Archer D et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol.25(2),221–231 (2007).
  • Nierman W, Pain A, Anderson M et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature438(7071),1151–1156 (2005).
  • James E, Sarah E, Christina Cuomo L, Jennifer R, Serafim Batzoglou S. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature438(7071),1105–1115 (2005).
  • Machida M, Asai K, Sano M et al. Genome sequencing and analysis of Aspergillus oryzae. Nature438(7071),1157–1161 (2005).
  • Cuomo C, Guldener U, Xu J et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science317(5843),1400 (2007).
  • Dean R, Talbot N, Ebbole D et al. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature434(7036),980–986 (2005).
  • Galagan J, Calvo S, Borkovich K et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature422(6934),859–868 (2003).
  • van den Berg M, Albang R, Albermann K et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol.26(10),1161–1168 (2008).
  • Kämper J, Kahmann R, Bölker M et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature444(7115),97–101 (2006).
  • Allgaier M, Reddy A, Park J et al. Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community. PLoS One5(1),372–380 (2010).
  • Tringe S, Von Mering C, Kobayashi A et al. Comparative metagenomics of microbial communities. Science308(5721),554 (2005).
  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P. Metagenomic gene discovery: past, present and future. Trends Biotechnol.23(6),321–329 (2005).
  • Duan C, Feng J. Mining metagenomes for novel cellulase genes. Biotechnol. Lett.32(12),1765–1775 (2010).
  • Ferrer M, Golyshina O, Beloqui A, Golyshin P. Mining enzymes from extreme environments. Curr. Opin. Microbiol.10(3),207–214 (2007).
  • Riesenfeld C, Schloss P, Handelsman J. Metagenomics: genomic analysis of microbial communities. Genetics38(1),525 (2004).
  • Schmeisser C, Steele H, Streit W. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol.75(5),955–962 (2007).
  • Cravatt B, Simon G, Yates Iii J. The biological impact of mass-spectrometry-based proteomics. Nature450(7172),991–1000 (2007).
  • Mann M, Kelleher N. Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl Acad. Sci.105(47),18132 (2008).
  • Schneider T, Gerrits B, Gassmann R et al. Proteome analysis of fungal and bacterial involvement in leaf litter decomposition. Proteomics10(9),1819–1830 (2010).
  • Mahajan S, Master E. Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl. Microbiol. Biotechnol.86(6),1903–1914 (2010).
  • Raman B, Pan C, Hurst G et al. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One4(4), (2009).
  • Muddiman D, Andrews G, Lewis D, Notey J, Kelly R. Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2. Anal. Bioanal. Chem.398(1),377–389 (2010).
  • Martinez D, Challacombe J, Morgenstern I et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc. Natl Acad. Sci.106(6),1954 (2009).
  • Tsang A, Butler G, Powlowski J, Panisko E, Baker S. Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genetics Biol.46(1),S153–S160 (2009).
  • Vanden Wymelenberg A, Gaskell J, Mozuch M et al. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl. Environ. Microbiol.76(11),3599 (2010).
  • Budnik B, Lee R, Steen J. Global methods for protein glycosylation analysis by mass spectrometry. Biochim. Biophys. Acta14,25 (2006).
  • Hitchen P, Dell A. Bacterial glycoproteomics. Microbiology152(6),1575 (2006).
  • Morelle W, Canis K, Chirat F, Faid V, Michalski J. The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics6(14),3993–4015 (2006).
  • Sun B, Ranish J, Utleg A et al. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol. Cellular Proteomics6(1),141 (2007).
  • Wollscheid B, Bausch-Fluck D, Henderson C et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat. Biotechnol.27(4),378–386 (2009).
  • Zaia J. Mass spectrometry and the emerging field of glycomics. Chem. Biol.15(9),881–892 (2008).
  • Eriksson T, Stals I, Collén A et al. Heterogeneity of homologously expressed Hypocrea jecorina (Trichoderma reesei) Cel7B catalytic module. Eur. J. Biochem.271(7),1266–1276 (2004).
  • Hui J, White T, Thibault P. Identification of glycan structure and glycosylation sites in cellobiohydrolase II and endoglucanases I and II from Trichoderma reesei. Glycobiology12(12),837 (2002).
  • Sandra K, Van Beeumen J, Stals I, Sandra P, Claeyssens M, Devreese B. Characterization of cellobiohydrolase I N-glycans and differentiation of their phosphorylated isomers by capillary electrophoresis- Q-trap mass spectrometry. Anal. Chem.76(19),5878–5886 (2004).
  • Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M. Factors influencing glycosylation of Trichoderma reesei cellulases. I: postsecretorial changes of the O-and N-glycosylation pattern of Cel7A. Glycobiology14(8),713 (2004).
  • Gerwig G, Kamerling J, Vliegenthart J, Morag E, Lamed R, Bayer E. Primary structure of O-linked carbohydrate chains in the cellulosome of different Clostridium thermocellum strains. Eur. J. Biochem.196(1),115–122 (1991).
  • Rincon M, Ding S, McCrae S et al. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens. J. Bacteriol.185(3),703 (2003).
  • Adney W, Jeoh T, Beckham G et al. Probing the role of N-linked glycans in the stability and activity of fungal cellobiohydrolases by mutational analysis. Cellulose16(4),699–709 (2009).
  • Jeoh T, Michener W, Himmel M, Decker S, Adney W. Implications of cellobiohydrolase glycosylation for use in biomass conversion. Biotechnol. Biofuels1(1),10 (2008).
  • Zhao X, Rignall T, McCabe C, Adney W, Himmel M. Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization. Chem. Phys. Lett.460(1–3),284–288 (2008).
  • Otten L, Greye H, Hernalsteens J et al. Mendelian transcmission of genes introduced into plants by the Ti plasmids of Agrobacterium tumefaciens. MGG183(2),209–213 (1981).
  • Birch R. Plant transformation: problems and strategies for practical application. Ann. Rev.Plant Physiol. Plant Mol. Biol.48(1),297 (2003).
  • Jeon J, Lee S, Jung K et al. T DNA insertional mutagenesis for functional genomics in rice. Plant J.22(6),561–570 (2000).
  • Meinke D, Cherry J, Dean C, Rounsley S, Koornneef M. Arabidopsis thaliana: a model plant for genome analysis. Science282(5389),662(1998).
  • Parinov S, Sundaresan V. Functional genomics in Arabidopsis: large-scale insertional mutagenesis complements the genome sequencing project. Curr. Opin. Biotech.11(2),157–161 (2000).
  • Somers D, Samac D, Olhoft P. Recent advances in legume transformation. Plant Physiol.131(3),892 (2003).
  • Vain P, Worland B, Thole V et al. Agrobacterium mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T DNA insertional mutagenesis. Plant Biotechnol. J.6(3),236–245 (2008).
  • Michielse C, Hooykaas P, van den Hondel C, Ram A. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr. Genetics48(1),1–17 (2005).
  • Piers K, Heath J, Liang X, Stephens K, Nester E. Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl Acad. Sci. USA93(4),1613 (1996).
  • Ballance DJ, Buxton FP, Turner G. Transformation of Aspergillus nidulans by the orotidine 5’-phosphate decarboxylase gene of Neurospora crassa. Biochem. Biophys. Res. Comm.112(1),284–289 (1983).
  • Dan Y, Baxter A, Zhang S, Pantazis CJ, Veilleux RE. Development of efficient plant regeneration and transformation system for Impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants. BMC Plant Biol.10,165 (2010).
  • Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ. Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplasts. Plant Sci.170(1),135–142 (2006).
  • Bailey M, Nevalainen K. Induction, isolation and testing of stable Trichoderma reesei mutants with improved production of solubilizing cellulase. Enzyme Microbial Technol.3(2),153–157 (1981).
  • Brown J, Falconer D, Wood T. Isolation and properties of mutants of the fungus Penicillium pinophilum with enhanced cellulase and β-glucosidase production. Enzyme Microbial Technol.9(3),169–175 (1987).
  • Durand H, Clanet Gérard M. Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microbial Technol.10(6),341–346 (1988).
  • Farkaš V, Labudova I, Bauer Š, Ferenczy L. Preparation of mutants of Trichoderma viride with increased production of cellulase. Folia Microbiologica26(2),129–132 (1981).
  • Ilmén M, Thrane C, Penttilä M. The glucose repressor genecre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. MGG,251(4),451–460 (1996).
  • Kubicek C, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels,2,19 (2009).
  • Aro N, Ilmen M, Saloheimo A, Penttila M. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol.69(1),56–65 (2003).
  • Brestic-Goachet N, Gunasekaran P, Cami B, Baratti J. Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. Microbiology135(4),893 (1989).
  • Den Haan R, Rose S, Lynd L, Van Zyl W. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Eng.9(1),87–94 (2007).
  • Saloheimo M, Niku-Paavola M. Heterologous production of a ligninolytic enzyme: expression of the Phlebia radiata laccase gene in Trichoderma reesei. Nat. Biotechnol.9(10),987–990 (1991).
  • Dai Z, Hooker B, Anderson D, Thomas S. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res.9(1),43–54 (2000).
  • Hood E, Love R, Lane J et al. Subcellular targeting is a key condition for high level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol. J.5(6),709–719 (2007).
  • Ziegelhoffer T, Raasch J, Austin-Phillips S. Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol. Breeding8(2),147–158 (2001).
  • Sticklen M. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat. Rev. Genetics9(6),433–443 (2008).
  • Taylor I, Larry E, Dai Z et al. Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol.26(8),413–424 (2008).
  • Mohagheghi A, Grohmann K, Himmel M, Leighton L, Updegraff DM. Isolation and characterization of Acidothermus cellulolyticus, a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int. J. Syst. Bacteriol.36(3),435–443 (1986).
  • Fukumori F, Kudo T, Narahashi Y, Horikoshi K. Molecular cloning and nucleotide sequence of the alkaline cellulase gene from the alkalophilic Bacillus sp. strain 1139. J. General Microbiol.132(8),2329–2335 (1986).
  • Sharma D, Satyanarayana T. A marked enhancement in the production of a highly alkaline and thermostable pectinase by Bacillus pumilus dcsr1 in submerged fermentation by using statistical methods. Bioresource Technol.97(5),727–733 (2006).
  • Panbangred W, Kondo T, Negoro S, Shinmyo A, Okada H. Molecular cloning of the genes for xylan degradation of Bacillus pumilus and their expression in Escherichia coli. MGG192(3),335–341 (1983).
  • Murphy N, McConnell D, Cantwell B. The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme glucanase. Nucleic Acids Res.12(13),5355 (1984).
  • Hirasawa K, Uchimura K, Kashiwa M et al. Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Van Leeuwenhoek89(2),211–219 (2006).
  • Liang Y, Yesuf J, Schmitt S, Bender K, Bozzola J. Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. J. Ind. Microbiol. Biotechnol.36(7),961–970 (2009).
  • Pérez-Avalos O, Sánchez-Herrera L, Salgado L, Ponce-Noyola T. A bifunctional endoglucanase/endoxylanase from Cellulomonas flavigena with potential use in industrial processes at different pH. Curr. Microbiol.57(1),39–44 (2008).
  • Langsford ML, Gilkes NR, Wakarchuk WW, Kilburn DG, Miller RC Jr, Warren RAJ. The cellulase system of Cellulomonas fimi. J. General Microbiol.130(6),1367–1376 (1984).
  • Tai S, Lin H, Kuo J, Liu J. Isolation and characterization of a cellulolytic Geobacillus thermoleovorans T4 strain from sugar refinery wastewater. Extremophiles8(5),345–349 (2004).
  • Ko C, Chen W, Tsai C, Jane W, Liu C, Tu J. Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresource Technol.98(14),2727–2733 (2007).
  • Wang C, Shyu C, Ho S, Chiou S. Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett. Appl. Microbiol.47(1),46–53 (2008).
  • Hankin L, Anagnostakis S. Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. Microbiology98(1),109 (1977).
  • Su T-M, Paulavicius I. Enzymatic saccharification of cellulose by thermophilic actinomyces. Appl. Polym. Symp.28,16 (1975).
  • Stutzenberger F. Degradation of cellulosic substances by Thermomonospora curvata. Biotechnol. Bioeng.21(5),909–913 (1979).
  • Crawford D, McCoy E. Cellulases of Thermomonospora fusca and Streptomyces thermodiastaticus. Appl. Environ. Microbiol.24(1),150 (1972).
  • Ding S, Bayer E, Steiner D, Shoham Y, Lamed R. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J. Bacteriol.181(21),6720 (1999).
  • Sabathé F. Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol. Lett.217(1),15–22 (2002).
  • Bagnara-Tardif C, Gaudin C, Belaich A, Hoest P, Citard T, Belaich J. Sequence analysis of a gene cluster encoding cellulases from Clostridium cellulolyticum. Gene119(1),17–28 (1992).
  • Shoseyov O, Takagi M, Goldstein M, Doi R. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc. Natl Acad. Sci. USA89(8),3483 (1992).
  • Kakiuchi M, Isui A, Suzuki K et al. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol.180(16),4303 (1998).
  • Garcia V, Madarro A, Peña J, Piñaga F, Vallès S, Flors A. Purification and characterization of cellulases from Clostridium papyrosolvens. J. Chem. Technol. Biotechnol.46(1),49–60 (1989).
  • Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem.64(2),254–260 (2000).
  • Kirby J, Martin J, Daniel A, Flint H. Dockerin like sequences in cellulases and xylanases from the rumen cellulolytic bacterium Ruminococcus flavefaciens. FEMS Microbiol. Lett.149(2),213–219 (1997).
  • Kansarn S, Nihira T, Hashimoto E, Suzuki M, Kono T, Okada G. Purification and properties of two endo-cellulases from Acremonium cellulolyticus. J. Appl. Glycoscience47(3/4),293–302 (2000).
  • Ximenes F, de Sousa M, Puls J, da Silva Jr F, Filho E. Purification and characterization of a low-molecular-weight xylanase produced by Acrophialophora nainiana. Curr. Microbiol.38(1),18–21 (1999).
  • Adisa V, Fajola A. Cellulolytic enzymes associated with the fruit rots of Citrus sinensis caused by Aspergillus aculeatus and Botryodiplodia theobromae. Mycopathologia82(1),23–27 (1983).
  • Reese E, Siu R, Levinson H. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol.59(4),485 (1950).
  • Vandamme E, Logghe J, Geeraerts H. Cellulase activity of a thermophilic Aspergillus fumigatus (fresenius) strain. J. Chem. Technol. Biotechnol.32(7–12),968–974 (1982).
  • Li L, King K. Fractionation of β-glucosidases and related extracellular enzymes from Aspergillus niger. Appl. Environ. Microbiol.11(4),320 (1963).
  • Jermyn M. Fungal cellulases. I. General properties of unpurified enzyme preparations from Aspergillus oryzae. Aus. J. Sci.5,409–432 (1952).
  • Wood T, Phillips D. Another source of cellulase. Nature222,986–987 (1969).
  • Fergus C. The cellulolytic activity of thermophilic fungi and actinomycetes. Mycologia61(1),120–129 (1969).
  • Nisizawa K. Cellulose-splitting enzymes: v. purification of irpex cellulase and its action upon p-nitrophenyl r β-cellobioside. J. Biochem.42(6),825 (1955).
  • Wood T, McCrae S. Purification and some properties of a (1--> 4)-β-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum. Carbohydrate Res.110(2),291–303 (1982).
  • Domsch K, Gams W. Variability and potential of a soil fungus population to decompose pectin, xylan and carboxymethyl-cellulose. Soil Biol. Biochem.1(1),29–36 (1969).
  • Olutiola P. A cellulase complex in culture filtrates of Penicillium citrinum. Can. J. Microbiol.22(8),1153 (1976).
  • Saddler J. Screening of highly cellulolytic fungi and the action of their cellulase enzyme systems. Enzyme Microbial Technol.4(6),414–418 (1982).
  • Jurásek L, Colvin J, Whitaker D. Microbiological aspects of the formation and degradation of cellulosic fibers. Adv. Appl. Microbiol.9,131–170 (1968).
  • Bateman D. Some characteristics of the cellulase system produced by Sclerotium rolfsii Sacc. Phytopathology59(1),37–42 (1969).
  • Bateman D. The polygalacturonase complex produced by Sclerotium rolfsii. Physiologial Plant Pathol.2(2),175–184 (1972).
  • Folan M, Coughlan M. The cellulase complex in the culture filtrate of the thermophyllic fungus, Talaromyces emersonii. Int. J. Biochem.9(10),717–722 (1978).
  • Gong C, Ladisch M, Tsao G. Biosynthesis, purification, and mode of action of cellulases of Trichoderma reesei. Adv. Chem. Ser.181,261–288 (1979).
  • Reese E, Levinson H. A comparative study of the breakdown of cellulose by microorganisms. Physiologia Plantarum5(3),345–366 (1952).
  • Ho Y, Bauchop T, Abdullah N, Jalaludin S. Ruminomyces elegans gen. et sp. nov., a polycentric anaerobic rumen fungus from cattle. Mycotaxon (1990).
  • Fliegerova K, Paioutova S, Mrazek J, Kopean J. Special properties of polycentric anaerobic fungus Anaeromyces mucronatus. Acta Vet. Brno.71,441–444 (2002).
  • Matsui H, Ban-Tokuda T. Studies on carboxymethyl cellulase and xylanase activities of anaerobic fungal isolate CR4 from the bovine rumen. Curr. Microbiol.57(6),615–619 (2008).
  • Wilson C, Wood T. The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl. Microbiol. Biotechnol.37(1),125–129 (1992).
  • Webb J, Theodorou MK (1991) Neocallimastix hurleyensis sp.nov., an anaerobic fungus from the ovine rumen. Can. J. Bot.69(10),1220–1224.
  • Pai C, Wu Z, Chen M et al. Molecular cloning and characterization of a bifunctional xylanolytic enzyme from Neocallimastix patriciarum. Appl. Microbiol. Biotechnol.85(5),1451–1462 (2010).
  • Qiu X, Selinger B, Yanke L, Cheng K. Isolation and analysis of two cellulase cDNAs from Orpinomyces joyonii. Gene245(1),119–126 (2000).
  • Steenbakkers P, Li X, Ximenes E et al. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J. Bacteriol.183(18),5325 (2001).
  • Li X, Chen H, Ljungdahl L. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl. Environ. Microbiol.63(12),4721 (1997).
  • Wood TM, Wilson CA. Studies on the capacity of the cellulase of the anaerobic rumen fungus Piromonas communis P to degrade hydrogen bond-ordered cellulose. Appl. Microbiol. Biotechnol.43,572–578 (1995).
  • Raghothama S, Eberhardt R, Simpson P et al. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat. Struct. Mol. Biol.8(9),775–778 (2001).
  • Dijkerman R, den Camp H, Van der Drift C. Cultivation of anaerobic fungi in a 10-l fermenter system for the production of (hemi-) cellulolytic enzymes. Appl. Microbiol. Biotechnol.46(1),85–91 (1996).

▪ Patents

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.