530
Views
49
CrossRef citations to date
0
Altmetric
Review

Perspectives on metabolic engineering for increased lipid contents in microalgae

, &
Pages 71-86 | Published online: 09 Apr 2014

References

  • Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J. Biosci. Bioeng.92,405–416 (2001).
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol.26,126–131 (2008).
  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl Acad. Sci. USA103,11206–11210 (2006).
  • United Nations Environment Programme. Towards Sustainable Production and Use of Resources: Assessing Biofuels. United Nations Environment Programme, Paris, France (2009).
  • Koh LP, Wilcove DS. Is oil palm agriculture really destroying tropical biodiversity? Conserv. Lett.1,60–64 (2008).
  • Donner SD, Kucharik CJ. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc. Natl Acad. Sci. USA105,4513–4518 (2008).
  • Lu J, Sheahan C, Fu PC. Metabolic engineering of algae for fourth generation biofuels production. Energ. Environ. Sci.4,2451–2466 (2011).
  • Schenk PM, Thomas-Hall SR, Stephens E et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res.1,20–43 (2008).
  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ. Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface7,703–726 (2010).
  • Yun YS, Lee SB, Park JM, Lee CI, Yang JW. Carbon dioxide fixation by algal cultivation using wastewater nutrients. J. Chem. Tech. Biotech.69,451–455 (1997).
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev.14,217–232 (2010).
  • Fahy E, Subramaniam S, Murphy RC et al. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. (Suppl. 50), S9–S14 (2009).
  • Khozin-Goldberg I, Iskandarov U, Cohen Z. LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biot.91,905–915 (2011).
  • Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Mar. Drugs9,625–644 (2011).
  • Banerjee UC, Banerjee A, Sharma R, Chisti Y. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol.22,245–279 (2002).
  • Hillen LW, Pollard G, Wake LV, White N. Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol. Bioeng.24,193–205 (1982).
  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z. Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry60,497–503 (2002).
  • Raven JA. Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth. Res.106,123–134 (2010).
  • Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell7,957–970 (1995).
  • Fan JL, Andre C, Xu CC. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. Febs. Lett.585,1985–1991 (2011).
  • Khozin-Goldberg I, Cohen Z. Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie93,91–100 (2011).
  • Athenstaedt K, Daum G. The life cycle of neutral lipids: synthesis, storage and degradation. Cell. Mol. Life Sci.63,1355–1369 (2006).
  • Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation – metabolic pathway with multiple functions. Bba-Mol. Cell. Res.1763,1413–1426 (2006).
  • Matos AR, Pham-Thi AT. Lipid deacylating enzymes in plants: old activities, new genes. Plant Physiol. Bioch.47,491–503 (2009).
  • Jinkerson RE, Subramaniam S, Posewitz MC. Improving biofuel production in phototrophic microorganisms with systems biology. Biofuels2,125–144 (2011).
  • Merchant SS, Prochnik SE, Vallon O et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science318,245–251 (2007).
  • Blanc G, Duncan G, Agarkova I et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell22,2943–2955 (2010).
  • Worden AZ, Lee JH, Mock T et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science324,268–272 (2009).
  • Palenik B, Grimwood J, Aerts A et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl Acad. Sci. USA104,7705–7710 (2007).
  • Derelle E, Ferraz C, Rombauts S et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl Acad. Sci. USA103,11647–11652 (2006).
  • Prochnik SE, Umen J, Nedelcu AM et al. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science329,223–226 (2010).
  • Bowler C, Allen AE, Badger JH et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature456,239–244 (2008).
  • Armbrust EV, Berges JA, Bowler C et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science306,79–86 (2004).
  • Matsuzaki M, Misumi O, Shin-I T et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature428,653–657 (2004).
  • Riekhof WR, Sears BB, Benning C. Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1(Cr). Eukaryot. Cell4,242–252 (2005).
  • Kroth PG, Chiovitti A, Gruber A et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One3(1),e1426 (2008).
  • Wagner M, Hoppe K, Czabany T et al. Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol. Bioch.48,407–416 (2010).
  • Xu JY, Zheng ZF, Zou JT. A membrane-bound glycerol-3-phosphate acyltransferase from Thalassiosira pseudonana regulates acyl composition of glycerolipids. Botany87,544–551 (2009).
  • Tonon T, Sayanova O, Michaelson LV et al. Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J.272,3401–3412 (2005).
  • Tonon T, Qing RW, Harvey D et al. Identification of a long-chain polyunsaturated fatty acid acyl-coenzyme a synthetase from the diatom Thalassiosira pseudonana. Plant Physiol.138,402–408 (2005).
  • Tonon T, Harvey D, Qing R et al. Identification of a fatty acid delta 11-desaturase from the microalga Thalassiosira pseudonana. FEBS Lett.563,28–34 (2004).
  • Chi XY, Zhang XW, Guan XY et al. Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: Identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. J. Microbiol.46,189–201 (2008).
  • Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. Plant J.66,143–160 (2011).
  • Beer LL, Boyd ES, Peters JW, Posewitz MC. Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol.20,264–271 (2009).
  • Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol.141,31–41 (2009).
  • Miller R, Wu GX, Deshpande RR et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol.154,1737–1752 (2010).
  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics12,148 (2011).
  • Kim DK, Hong SJ, Bae JH et al. Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol. Bioproc. E16,698–705 (2011).
  • Schenk PM, Nguyen AV, Thomas-Hall SR et al. Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot. Cell7,1965–1979 (2008).
  • Gonzalez-Ballester D, Casero D, Cokus S et al. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell22,2058–2084 (2010).
  • Timmins M, Zhou W, Rupprecht J et al. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J. Biol. Chem.284,23415–23425 (2009).
  • Monnier A, Liverani S, Bouvet R et al. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics11,192 (2010).
  • Sapriel G, Quinet M, Heijde M et al. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One4,e7458 (2009).
  • Maheswari U, Mock T, Armbrust EV, Bowler C. Update of the diatom EST database: a new tool for digital transcriptomics. Nucleic Acids Res.37,D1001–D1005 (2009).
  • Moellering ER, Benning C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell9,97–106 (2010).
  • Terashima M, Specht M, Naumann B, Hippler M. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol. Cell. Proteomics9,1514–1532 (2010).
  • Wang SB, Chen F, Sommerfeld M, Hu Q. Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta220,17–29 (2004).
  • Barrios-Llerena ME, Pritchard JC, Kerr LE, Le Bihan T. The use of a novel quantitation strategy based on reductive isotopic di-ethylation (RIDE) to evaluate the effect of glufosinate on the unicellular algae Ostreococcus tauri. J. Proteomics74(12),2798–2809 (2011).
  • Le Bihan T, Martin SF, Chirnside ES et al. Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J. Proteomics74(10),2060–2070 (2011).
  • Renberg L, Johansson AI, Shutova T et al. A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol.154,187–196 (2010).
  • Patil KR, Akesson M, Nielsen J. Use of genome-scale microbial models for metabolic engineering. Curr. Opin. Biotechnol.15,64–69 (2004).
  • Schmidt BJ, Lin-Schmidt X, Chamberlin A, Salehi-Ashtiani K, Papin JA. Metabolic systems analysis to advance algal biotechnology. Biotechnol. J.5,660–670 (2010).
  • Nookaew I, Jewett MC, Meechai A et al. The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst. Biol.2,71 (2008).
  • Yang C, Hua Q, Shimizu K. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J.6,87–102 (2000).
  • Cogne G, Gros JB, Dussap CG. Identification of a metabolic network structure representative of Arthrospira (Spirulina) platensis metabolism. Biotechnol. Bioeng.84,667–676 (2003).
  • Shastri AA, Morgan JA. Flux balance analysis of photoautotrophic metabolism. Biotechnol. Prog.21,1617–1626 (2005).
  • Boyle NR, Morgan JA. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst. Biol.3,4 (2009).
  • Manichaikul A, Ghamsari L, Hom EF et al. Metabolic network analysis integrated with transcript verification for sequenced genomes. Nat. Methods6,589–592 (2009).
  • Chang RL, Ghamsari L, Manichaikul A et al. Metabolic network reconstruction of Chlamydomonas offers insight into light-driven algal metabolism. Mol. Syst. Biol.7,518 (2011).
  • Cogne G, Rugen M, Bockmayr A et al. A model-based method for investigating bioenergetic processes in autotrophically growing eukaryotic microalgae: application to the green algae Chlamydomonas reinhardtii. Biotechnol. Prog.27,631–640 (2011).
  • Zeng XH, Danquah MK, Chen XD, Lu YH. Microalgae bioengineering: from CO2 fixation to biofuel production. Renew. Sust. Energ. Rev.15,3252–3260 (2011).
  • Potvin G, Zhang ZS. Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol. Adv.28,910–918 (2010).
  • Mussgnug JH, Thomas-Hall S, Rupprecht J et al. Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol. J.5,802–814 (2007).
  • Polle JE, Kanakagiri SD, Melis A. Tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta217,49–59 (2003).
  • Zaslavskaia LA, Lippmeier JC, Shih C et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science292,2073–2075 (2001).
  • Whitney SM, Houtz RL, Alonso H. Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol.155,27–35 (2011).
  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG. Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotech.57–58,223–231 (1996).
  • Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab. Eng.13,89–95 (2011).
  • Iskandarov U, Khozin-Goldberg I, Cohen Z. Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I. Identification of mutation site and expression of VLC-PUFA biosynthesis genes. Appl. Microbiol. Biotechnol.90,249–256 (2011).
  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production. Eukaryot. Cell9,486–501 (2010).
  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell.8,1856–1868 (2009).
  • Li Y, Han D, Hu G et al.Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng.12,387–391 (2010).
  • Li Y, Han D, Hu G, Sommerfeld M, Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng.107,258–268 (2010).
  • Work VH, Radakovits R, Jinkerson RE et al. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot. Cell9,1251–1261 (2010).
  • Siaut M, Cuine S, Cagnon C et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol.11,7 (2011).
  • Ramazanov Z, Ramazanov A. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol. Res.54,255–259 (2006).
  • Donmez G, Karatay SE. Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl. Energ.88,3632–3635 (2011).
  • Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biot.66,486–496 (2005).
  • Leon R, Couso I, Fernandez E. Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J. Biotechnol.130,143–152 (2007).
  • Wu QY, Miao XL. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol.110,85–93 (2004).
  • Guzman HM, Valido AD, Duarte LC, Presmanes KF. Analysis of interspecific variation in relative fatty acid composition: use of flow cytometry to estimate unsaturation index and relative polyunsaturated fatty acid content in microalgae. J. Appl. Phycol.23,7–15 (2011).
  • Cheng LH, Lv JM, Xu XH, Zhang L, Chen HL. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technol.101,6797–6804 (2010).
  • Converti A, Casazza AA, Ortiz EY, Perego P, De Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process48,1146–1151 (2009).
  • Chow KC, Tung WL. Electrotransformation of Chlorella vulgaris. Plant Cell. Rep.18,778–780 (1999).
  • Inomata H, Ota M, Kato Y et al. Effects of nitrate and oxygen on photoautotrophic lipid production from Chlorococcum littorale. Bioresource Technol.102,3286–3292 (2011).
  • Chisti Y, Sobczuk TM. Potential fuel oils from the microalga Choricystis minor. J. Chem. Technol. Biot.85,100–108 (2010).
  • Salley SO, Chen M, Tang HY et al. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technol.102,1649–1655 (2011).
  • Walker TL, Becker DK, Dale JL, Collet C. Towards the development of a nuclear transformation system for Dunaliella tertiolecta. J. Appl. Phycol.17,363–368 (2005).
  • Feng SY, Xue LX, Liu HT, Lu PJ. Improvement of efficiency of genetic transformation for Dunaliella salina by glass beads method. Mol. Biol. Rep.36,1433–1439 (2009).
  • Stuart BJ, Csavina JL, Riefler RG, Vis ML. Growth optimization of algae for biodiesel production. J. Appl. Microbiol.111,312–318 (2011).
  • Schiedlmeier B, Schmitt R, Muller W et al. Nuclear transformation of Volvox carteri. Proc. Natl Acad. Sci. USA91,5080–5084 (1994).
  • Xue S, Feng DN, Chen ZA, Zhang W. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technol.102,6710–6716 (2011).
  • McGinnis KM, Dempster TA, Sommerfeld MR. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J. Appl. Phycol.9,19–24 (1997).
  • Chen HL, Li SS, Huang R, Tsai HJ. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J. Phycol.44,768–776 (2008).
  • Posewitz MC, Radakovits R, Eduafo PM. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab. Eng.13,89–95 (2011).
  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J. Phycol.36,379–386 (2000).
  • Thi TYD, Sivaloganathan B, Obbard JP. Screening of marine microalgae for biodiesel feedstock. Biomass Bioenerg.35,2534–2544 (2011).
  • Poulsen N, Chesley PM, Kroger N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol.42,1059–1065 (2006).
  • Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K. Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell. Physiol.45,667–671 (2004).
  • Barber J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev.38,185–196 (2009).
  • Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotech. Bioch.68,1175–1184 (2004).
  • Goepfert S, Poirier Y. Beta-oxidation in fatty acid degradation and beyond. Curr. Opin. Plant. Biol.10,245–251 (2007).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.