7,919
Views
195
CrossRef citations to date
0
Altmetric
Review

The place of diatoms in the biofuels industry

, , , &
Pages 221-240 | Published online: 09 Apr 2014

References

  • Pienkos PT, Darzins A. The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod. Bioref. Bioref.3,431–440 (2009).
  • Trequer P, Nelson DM, Van Bennekom AJ, DeMaster DJ, Leynaert A, Queguiner B. The silica balance in the world ocean: a reestimate. Science268,375–379 (1995).
  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere, integrating terrestrial and oceanic components. Science281,237–240 (1998).
  • Kooistra WHCF, Gersonde R, Medlin LK, Mann DG. The origin and evolution of the diatoms. In: Evolution of Primary Producers in the Sea. Falkowski PG, Knoll AH (Eds). Elsevier, Boston, MA, USA, 207–249 (2007).
  • Armbrust EV. The life of diatoms in the world’s oceans. Nature459,185–192 (2009).
  • Becker B, Hoef-Emden K, Melkonian M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol. Biol.8,203–220 (2008).
  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science324,1724–1726 (2009).
  • Bowler C, Allen AE, Badger JH et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature456,239–244 (2008).
  • Finazzi G, Moreau H, Bowler C. Genomic insights into photosynthesis in eukaryotic phytoplankton. Trends Plant Sci.15,565–572 (2010).
  • Armbrust E, Berges J, Bowler C et al. The genome of the diatom Thalassiosira pseudonana, ecology, evolution, and metabolism. Science306(5693),79–86 (2004).
  • Wilhelm C, Buchel C, Fisahn J et al. The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist157,91–124 (2006).
  • Guidry MW, Arvidson RS, MacKenzie FT. Biological and geochemical forcings to phanerozoic change in seawater, atmosphere, and carbonate precipitate composition. In: Evolution of Primary Producers in the Sea. Falkowski PG, Knoll AH (Eds). Elsevier, Boston, MA, USA, 377–403 (2007).
  • Rabosky DL, Sorhannus U. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature457,183–186 (2009).
  • Falkowski PG, Katz ME, Knoll AH et al. The evolution of modern eukaryotic phytoplankton. Science305,354–360 (2004).
  • Falkowski PG, Katz ME, Milligan AJ et al. The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science309,2202–2204 (2005).
  • Emery KO, Uchupi E. Western North Atlantic ocean. Am. Assoc. Pet. Geol. Mem.17,532 (1972).
  • Smetacek V. Diatoms and the ocean carbon cycle. Protist150,25–32 (1999).
  • Dugdale RC, Wilkerson FP. Silicate regulation of new production in the equatorial pacific upwelling. Nature391,270–273 (1998).
  • Raven JA. The role of vacuoles. New Phytol.106,357–422 (1987).
  • Sicko-Goad L, Stoermer EF, Ladewski BG. A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma93,147–163 (1977).
  • Eppley RW, Rogers J. Inorganic nitrogen assimilation of Ditylumbrightwellii, a marine plankton diatom. J. Phycol.6,344–350 (1970).
  • Furnas MJ. In situ growth rates of marine phytoplankton – approaches to measurement, community, and species growth rates. J. Plankton Res.12,1117–1151 (1990).
  • Amano Y, Takahashi K, Machida M. Competition between the cyanobacterium Microcystis aeruginosa and the diatom Cyclotella sp. under nitrogen-limited condition caused by dilution in eutrophic lake. J. Appl. Phycol. doi:10.1007/s10811–011–9718–8 (2011) (Epub ahead of print).
  • Tozzi S, Schofield O, Falkowski P. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Mar. Ecol. Prog. Ser.274,123–132 (2004).
  • Grover JP. Dynamics of competition in a variable environment – experiments with 2 diatom species. Ecology69,408–417 (1988).
  • Crowley TJ, North GR. Paleoclimatology. Oxford University Press, NY, USA, 349 (1991).
  • Prauss M. The oceanographic and climatic interpretation of marine palynomorph phytoplankton distribution from Mesozoic, Cenozoic and Recent sections. Göttinger Arb.Geol. Paläont.76,1–235 (2000).
  • Huber BT, Hodell DA, Hamilton CP. Middle–late cretaceous climate of the southern high-lattitudes – stable isotopic evidence for minimal equator-to-pole thermal-gradients. Geol. Soc. Am. Bull.107,1164–1191 (1995).
  • Falkowski PG, Oliver MJ. Mix and max, how climate selects phytoplankton. Nat. Rev. Microbiol.5,813–819 (2007).
  • Thomas WH, Dodson AN, Reid FMH. Diatom productivity compared with other algae in natural marine phytoplankton assemblages. J. Phycol.14,250–253 (1978).
  • Thomas WH, Seibert DLR, Dodson AN. Phytoplankton enrichment experiments and bioassays in natural coastal seawater and in sewage outfall receiving waters off Southern California. Estuar. Coast Mar. Sci.2,191–206 (1974).
  • Jitts HR, McAllister CD, Stephens K, Strickland JDH. The cell division rates of some marine phytoplankton as a function of light and temperature. J. Fish. Res. Board Can.21,139–157 (1964).
  • McAllister CD, Shah N, Strickland JDH. Marine phytoplankton photosynthesis as a function of light intensity, a comparison of methods. J. Fish. Res. Board Can.21,159–181 (1964).
  • Smetacek V. Diatoms and the ocean carbon cycle. Protist150,25–32 (1999).
  • Wagner H, Jakob T, Wilhelm C. Balancing the energy flow from captured light to biomass under fluctuating light. New Phytol.169,95–108 (2006).
  • Franklin DJ, Brussaard CPD, Berges JA. What is the role and nature of programmed cell death in phytoplankton ecology? Eur. J. Phycol.41,1–14 (2006).
  • Kirchman DL. Phytoplankton death in the sea. Nature398,293–294 (1999).
  • Parrish CC. Time series of particulate and dissolved lipid classes during spring phytoplankton blooms in Bedford Basin, a marine inlet. Mar. Ecol. Prog. Ser.35,129–139 (1987).
  • Nichols PD, Palmisano AC, Rayner MS, Smith GA, White DC. Changes in the lipid composition of Antarctic sea-ice diatom communities during a spring bloom, an indication of community physiological status. Antarct. Sci.1,133–140 (1989).
  • Lebeau T, Robert JM. Diatom cultivation and biotechnologically relevant products. Part 1: cultivation at various scales. Appl. Microbiol. Biotech.60,612–623 (2003).
  • Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR. Biomass productivities in wild type and pigment mutant of Cyclotella sp. (Diatom). Appl. Biochem. Biotech.157,507–526 (2009).
  • Goldman JC, Ryther JH, Williams LD. Mass production of marine algae in outdoor cultures. Nature245,594–595 (1975).
  • D’Elia CF, Ryther JH, Losordo TM. Productivity and nitrogen balance in large scale phytoplankton cultures. Water Res.11,1031–1040 (1977).
  • Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina.Biomass12,37–47 (1987).
  • Richmond A, Lichtenberg E, Stahl B, Vonshak A. Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J. Appl. Phycol.2,195–206 (1990).
  • Doucha J, Livansky K. Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J. Appl. Phycol.18,811–826 (2006).
  • Lohr M, Wilhelm C. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc. Natl Acad. Sci. USA96,8784–8789 (1999).
  • Wagner H, Jakob T, Wilhelm C. Balancing the energy flow from captured light to biomass under fluctuating light conditions. New Phytol.169,95–108 (2006).
  • Wollman FA. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J.20,3623–3630 (2001).
  • Ting CS, Owens TG. Photochemical and non-photochemical fluorescence quenching processes in the diatom Phaeodactylum tricornutum.Plant Physiol.101,1323–1330 (1986).
  • Berkaloff C, Caron L, Rousseau B. Subunit organization of PS I particles from brown algae and diatoms, polypeptide and pigment analysis. Photosynth. Res.23,181–193 (1990).
  • Owens TG. Light-harvesting antenna systems in the chlorophyll a/c-containing algae. In: Light-Energy Transduction in Photosynthesis. Stevens CLR, Bryant DA (Eds). American Society of Plant Physiologists, Rockville, MA, USA, 122–136 (1988).
  • Larkum AWD, Vesk M. Algal plastids, their fine structure and properties. Photosynthesis Algae. Larkum AW, Douglas SE, Raven JA (Eds). Kluwer Academic Publishers, Dordrecht, The Netherlands, 11–28 (2003).
  • Westermann M, Rhiel E. Localisation of fucoxanthin chlorophyll a/c-binding polypeptides of the centric diatom Cyclotella cryptica by immunoelectron microscopy. Protoplasma225,217–223 (2005).
  • Michels A, Wedel N, Kroth PG. Diatom plastids possess a phosphoribulokinase with an altered regulation and no oxidative pentose phosphate pathway. Plant Physiol.137,911–920 (2005).
  • Badger MR, Andrews TJ, Whitney SM et al. The diversity and coevolution of RuBisCO, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can. J. Bot.76,1052–1071 (1998).
  • Giordano M, Beardall J, Raven JA. CO2 concentrating mechanisms in algae. Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol.56,99–131 (2005).
  • Roberts K, Granum E, Leegood RC, Raven JA. Carbon acquisition by diatoms. Photosynth. Res.93,79–88 (2007).
  • Tachibana M, Allen AE, Kikutani S, Endo Y, Bowler C, Matsuda Y. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.Photosynth. Res.109,205–221 (2011).
  • Wirtz KW. Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO2 decline. J. Plankton Res.33,1325–1341 (2011).
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell (4th Edition). Garland Science, NY, USA (2002).
  • Lang M, Apt KE, Kroth PG. Protein transport into “complex” diatom plastids utilizes two different targeting signals. J. Biol. Chem.273,30973–30978 (1998).
  • Gibbs SJ. The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. Cell Sci.35,253–266 (1979).
  • Gruber A, Vugrinec S, Hempel F, Gould SB, Maier U, Kroth PG. Protein targeting into complex diatom plastids, function and characterization of a specific targeting motif. Plant Mol. Biol.64,519–530 (2007).
  • Moog D, Stork S, Zauner S, Maier UG. In silico and in vivo investigations of proteins of a minimized eukaryotic cytoplasm. Genome Biol. Evol.3,375–382 (2011).
  • Kroth PG, Chiovitti A, Gruber A et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE3,e1426 (2008).
  • Graham JWA, Williams TCR, Morgan M, Fernie AR, Ratcliffe RG, Sweetlove LJ. Glycolytic enzymes associate dynamically with mitochondria in response to respiratory demand and support substrate channeling. Plant Cell19,3723–3738 (2007).
  • Allen AE, Dupont CL, Obornik M et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature473,203–209 (2011).
  • Beattie A, Percival E, Hirst EL. Studies on metabolism of chrysophyceae – comparative structural investigations on leucosin. (chyrsolaminarin) separated from diatoms and laminarin from brown algae. Biochem. J.79,531–537 (1961).
  • Chiovitti A, Molino P, Crawford SA, Teng RW, Spurck T, Wetherbee R. The glucans extracted with warm water from diatoms are mainly derived from intracellular chrysolaminaran and not extracellular polysaccharides. Eur. J. Phycol.39,117–128 (2004).
  • Libessart N, Maddelein ML, Van den Koornhuyse N et al. Storage, photosynthesis, and growth – the conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas.Plant Cell7,1117–1127 (1995).
  • Pickett-Heaps J, Schmid AMM, Edgar LA. The cell biology of diatom valve formation. Progress in Phycological Research. Round FE, Chapman DJ (Eds). Biopress Ltd., Bristol, UK, 1–168 (1990).
  • Del Amo Y, Brzezinski MA. The chemical form of dissolved Si taken up by marine diatoms. J. Phycol.35,1162–1170 (1999).
  • Thamatrakoln K, Hildebrand M. Silicon uptake in diatoms revisited, a model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol.146,1397–1407 (2008).
  • Iler RK. The chemistry of silica, solubility, polymerization, colloid and surface properties, and biochemistry. Wiley-Interscience, NY, USA 866 (1979).
  • Raven JA. The transport and function of silicon in plants. Biol. Rev.58,179–207 (1983).
  • Milligan AJ, Morel FMM. A proton buffering role for silica in diatoms. Science297,1848–1850 (2002).
  • Brennan L, Owende P. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev.14,557–577 (2010).
  • Clavero E, Hernandez-Marine M, Grimalt JO, Garcia-Pichel F. Salinity tolerance of diatoms from thalassic hypersaline environments. J. Phycol.36,1021–1034 (2000).
  • Kraebs G, Buechel C. Temperature and salinity tolerances of geographically separated Phaeodactylum tricornutum Bohlin strains, maximum quantum yield of primary photochemistry, pigmentation, proline content and growth. Bot. Mar.54,231–241 (2011).
  • Gerhardt A, de Bisthoven LJ, Guhr K, Soares AMVM, Pereira MJ. Phytoassessment of acid mine drainage, Lemna gibba bioassay and diatom community structure. Ecotoxicology17,47–58 (2008).
  • Souza-Egipsy V, Altamirano M, Amils R, Aguilera A. Photosynthetic performance of phototrophic biofilms in extreme acidic environments. Env. Microbiol.13,2351–2358 (2011).
  • Hecky RE, Kilham P. Diatoms in alkaline, saline lakes – ecology and geochemical implications. Limnol. Oceanog.18,53–71 (1973).
  • Bryanskaya AV, Namsaraev ZB, Kalashnikova OM, Barkhutova DD, Namsaraev BB, Gorlenko VM. Biogeochemical processes in algal-bacterial mats of the Urinskii alkaline hot spring. Micrbiology75,611–620 (2006).
  • Tolomio C, Ceschi-Berrini C, Moschin E, Galzigna L. Colonization by diatoms and antirheumatic activity of thermal mud. Cell Biochem. Funct.17,29–33 (1999).
  • Choi HG, Joo HM, Jung W, Hong SS, Kang JS, Kang SH. Morphology and phylogenetic relationships of some psychrophilic polar diatoms (Bacillariophyta). Nova Hedw.133,7–30 (2008).
  • Neori A, Holm-Hansen O. Effect of temperature on rate of photosynthesis in Antarctic phytoplankton. Polar Biol.1,33–38 (1982).
  • Thomas DN, Dieckmann GS. Ocean science – Antarctic Sea ice – a habitat for extremophites. Science295,641–644 (2002).
  • Zielinski U, Gersonde R. Diatom distribution in southern ocean surface sediments. (Atlantic sector), implications for paleoenvironmental reconstructions. Paleogeo. Paleoclimat. Paleoecol.129,213–250 (1997).
  • Mock T, Hoch N. Long-term temperature acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus.Photosynth. Res.85,307–317 (2005).
  • Hellebust JA. Glucose uptake by Cyclotella cryptica – dark induction and light inactivation of transport system. J. Phycol.7,345–349 (1971).
  • Ceron Garcia M, Garcia Camacho F, Sanchez Miron A, Fernandez Sevilla JM, Molina Grima E. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol.16,689–694 (2006).
  • Lewin JC, Lewin RA. Auxotrophy and heterotrophy in marine littoral diatoms. Can. J. Microbiol.6,127–137 (1960).
  • Lewin JC, Lewin RA. Culture and nutrition of some apochlorotic diatoms of the genus Nitzschia.J. Gen. Microbiol.46,361–367 (1967).
  • Armstrong E, Rogerson A, Weftley JW. Utilisation of seaweed carbon by three surface associated heterotrophic protists, Stereomyxaramosa, Nitzschia alba and Labyrinthula sp. Aquat. Microb. Ecol.200,49–57 (2000).
  • Linkins AE. Uptake and utilization of glucose and acetate by a marine chemoorganotrophic diatom Nitzschia alba, clone link 001. PhD Thesis. University of Massachusetts, MA, USA (1973).
  • Shifrin NS, Chisholm SW. Phytoplankton lipids, interspecific differences and effects of nitrate, silicate, and light-dark cycles. J. Phycol.17,374–384 (1981).
  • Hu Q, Sommerfeld M, Jarvis E et al. Microalgal triacylglycerols as feedstocks for biofuel production, perspectives and advances. Plant J.54,621–639 (2008).
  • Griffiths MJ, Harrison STL. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol.21,493–507 (2009).
  • Yu ET, Zendejas FJ, Lane PD, Gaucher S, Simmons BA, Lane TW. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J. Appl. Phycol.21,669–681 (2009).
  • Guckert JB, Cooksey KE. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J. Phycol.26,72–79 (1990).
  • Thompson GA. Lipids and membrane function in green algae. Biochim. Biophys. Acta1302,17–45 (1996).
  • Chen GQ, Jiang Y, Chen F. Salt-induced alterations in lipid composition of diatom Nitzschia laevis under heterotrophic culture condition. J. Phycol.44,1309–1314 (2008).
  • Mansour MP, Frampton DMF, Nichols PD, Volkman JK, Blackburn SI. Lipid and fatty acid yield of nine stationary-phase microalgae, applications and unusual C-24-C-28 polyunsaturated fatty acids. J. Appl. Phycol.17,287–300 (2005).
  • Radakovits R, Eduafo PM, Posewitz MC. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum.Metab. Eng.13,89–95 (2011).
  • Knothe G. “Designer” biodiesel, optimizing fatty ester composition to improve fuel properties. Energy Fuels22,1358–1364 (2008).
  • Correa-Reyes JG, del Pilar Sanchez-Saavedra M, Viana Maria T, Flores-Acevedo N, Vasquez-Pelaez C. Effect of eight benthic diatoms as feed on the growth of red abalone (Haliotisrufescens) postlarvae. J. Appl. Phycol.21,387–393 (2009).
  • Lewin JC, Guillard RR. Diatoms. Ann. Rev. Microbiol.17,373–414 (1963).
  • Roessler PG. Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica.J. Phycol.24,394–400 (1988).
  • Bertrand M. Carotenoid biosynthesis in diatoms. Photosynth. Res.106,89–102 (2010).
  • Jin E, Polle JEW, Lee HK, Hyun SM, Chang M. Xanthophylls in microalgae, from biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol.13,165–174 (2003).
  • Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Phys. Plant Mol. Biol.50,47–65 (1999).
  • Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep.16,565–574 (1999).
  • Lincoln RA, Strupinski K, Walker JM. Biologically active compounds from diatoms. Diatom. Res.5,337–349 (1990).
  • Pesando D. Antibacterial and antifungical activities of marine algae. Introduction to Applied Phycology. Akatsuka I (Ed.). Academic Publishing, NY, USA 3–26 (1990).
  • Viso AC, Pesando D, Baby C. Antibacterial and antifungical properties of some marine diatoms in culture. Bot. Mar.30,41–45 (1987).
  • Imada N, Kobayashi K, Isdmura K et al. Isolation and identification of an autoinhibitor produced by Skeletonema costatum.Nippon Suisan Gakkaishi58,1687–1692 (1992).
  • Naviner M, Berge JP, Durand P, Le Bris H. Antibacterial activity of the marine diatom Skeletonema costatum against aquacultural pathogens. Aquaculture174,15–24 (1999).
  • Berge JP, Bourgougnon N, Carbonnelle D et al. Antiproliferative effects of an organic extract from the marine diatom Skeletonema costatum (Grev.) Cleve against a non-small-cell bronchopulmonary carcinoma line (NSCLC-N6). Anticancer Res.17,2115–2120 (1997).
  • Berge JP, Bourgougnon N, Pojer F et al. Antiviral and anticoagulant activities of a water-soluble fraction of the marine diatom Hasleaostrearia.Plant Med.65,604–609 (1999).
  • Rowland SJ, Belt ST, Wraige EJ, Masse G, Roussakis C, Robert JM. Effects of temperature on polyunsaturation in cytostatic lipids of Hasleaostrearia.Phytochemistry56,597–602 (2001).
  • Wraige EJ, Johns L, Belt SJ, Masse G, Robert JM, Rowland SJ. Highly branched C25 isoprenoids in axenic cultures of Hasleaostrearia.Phytochemistry51,69–73 (1999).
  • Prestegard SK, Oftedal L, Coyne RT et al. Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity. Mar. Drugs7,605–623 (2009).
  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Algal lipid bodies, stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii.Eukaryot. Cell8,1856–1868 (2009).
  • Work VH, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7–10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot. Cell9,1251–1261 (2010).
  • Deng X, Fei X, Li Y. The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella.Afr. J. Microbiol. Res.5,260–270 (2011).
  • Turpin DH. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol.27,14–20 (1991).
  • Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol.110,689–696 (1996).
  • Plumley FG, Schmidt GW. Nitrogen-dependent regulation of photosynthetic gene expresssion. Proc. Natl Acad. Sci. USA86,2678–2682 (1989).
  • Healy FP, Coombs J, Volcani BE. Changes in pigment content of the diatom Navicula pelliculosa (Bréb.) Hilse in silicon-starvation synchrony. Arch. Mikrobiol.59,131–142 (1967).
  • Martin NC, Chiang KS, Goodenough UW. Turnover of chloroplast and cytoplasmic ribosomes during gametogenesis in Chlamydomonas reinhardtii.Dev. Biol.51,190–201 (1976).
  • Geider RJ, LaRoche J, Greene R, Molaizola M. Response of the photosynthetic apparatus of Phaeodactylum tricornutum to nitrate, phosphate or iron starvation. J. Phycol.29,755–766 (1993).
  • Roessler PG. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch. Biochem. Biophys.267,521–528 (1988).
  • Berges JA, Falkowski PG. Physiological stress and cell death in marine phytoplankton, induction of proteases in response to nitrogen or light limitation. Limnol. Oceanog.43,129–135 (1998).
  • Claquin P, Martin-Jezequel V. Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorus control. J. Phycol.38,922–930 (2002).
  • Darley WM, Volcani BE. Role of silicon in diatom metabolism, a silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrothecafusiformis Reimann and Lewin. Exp. Cell Res.58,334–342 (1969).
  • McGinnis KM, Dempster TA, Sommerfeld MR. Characterization of the growth and lipid content of the diatom Chaetoceros muelleri.J. Appl. Phycol.9,19–24 (1997).
  • Schlechtriem C, Focken U, Becker K. Effect of different lipid extraction methods on δ C-13 of lipid and lipid-free fractions of fish and different fish feeds. Isotopes Environ. Health Stud.39,135–140 (2003).
  • Hildebrand M, Dahlin K. Nitrate transporter genes from the diatom Cylindrothecafusiformis. (Bacillariophyceae), mRNA levels controlled by nitrogen source and by the cell cycle. J. Phycol.36,702–713 (2000).
  • Shoaf WT, Lium BW. Improved extraction of chlorophyll a and b from algae using dimethyl sulfoxide. Limnol. Oceanog.21,926–928 (1976).
  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ. Placing microalgae on the biofuels priority list, a review of the technological challenges. J. R. Soc. Interface7,703–726 (2010).
  • Scharek R, Tupas LM, Karl DM. Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. Mar. Ecol. Prog. Ser.182,55–67 (1999).
  • Joh G, Choi YS, Shin JK, Lee J. Problematic algae in the sedimentation and filtration process of water treatment plants. J. Water Suppl. Res. Technol.60,219–230 (2011).
  • Borges L, Moron-Villarreyes JA, Montes D’Oca MG, Abreu PC. Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsisoculata and Thalassiosira weissflogii.Biomass Bioenerg.35,4449–4454 (2011).
  • Alldredge AL, Gotschalk CC. Direct observations of the mass flocculation of diatom blooms, characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. A Oceanogr. Res. Pap.36,159–171 (1989).
  • Logan BE, Passow U, Alldredge AL. Variable retention of diatoms on screens during size separations. Limnol. Oceanog.39,390–395 (1994).
  • Kiorboe T, Andersen KP, Dam HG. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol.107,235–245 (1990).
  • Smetacek VS. Role of sinking diatom life history cycles, ecological, evolutionary, and geological significance. Mar. Biol.84,239–251 (1985).
  • Margalef R. Turbulence and marine life. Scient. Mar.61(Supp. 1),109–123 (1997).
  • Contreras A, Garcia F, Molina E, Merchuk JC. Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol. Bioeng.60,317–325 (1998).
  • Camacho FG, Grima EM, Miron AS, Pascual VG, Chisti Y. Carboxymethyl cellulose protects algal cells against hydrodynamic stress. Enzyme Microb. Technol.29,602–610 (2001).
  • Lebeau T, Robert JM. Diatom cultivation and biotechnologically relevant products. Part 1, cultivation at various scales. Appl. Microbiol. Biotechnol.60,612–623 (2003).
  • Vandanjon L, Rossignol N, Jaouen P, Robert JM, Quemeneur F. Effects of shear on two microalgae species. Contribution of pumps and valves in tangential flow filtration systems. Biotechnol. Bioeng.63,1–9 (1999).
  • Michels MHA, van der Goot AJ, Norsker NH, Wijffels RH. Effects of shear stress on the microalgae Chaetoceros muelleri.Bioproc. Biosys. Engin.33,921–927 (2010).
  • Pohnert G. Diatom/copepod interactions in plankton, the indirect chemical defense of unicellular algae. ChemBioChem6,946–959 (2005).
  • Hamm CE, Merkel R, Springer O et al. Architecture and material properties of diatom shells provide effective mechanical protection. Nature421,841–843 (2003).
  • Shaw BA, Harrison PJ, Andersen RJ. Feeding deterrence properties of apo-fucoxanthinoids from marine diatoms. 2: physiology of production of apo-fucoxanthinoids by the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana, and their feeding deterrent effects on the copepod Tigriopuscalifornicus.Mar. Biol.124,473–481 (1995).
  • Kuhn SF. Infection of Coscinodiscus spp. by the parasitoid nanoflagellate Pirsonia diadema. 1: behavioural studies on the infection process. J. Plankton Res.19,791–804 (1997).
  • Rasconi S, Jobard M, Sime-Ngando T. Parasitic fungi of phytoplankton, ecological roles and implications for microbial food webs. Aquat. Microb. Ecol.62,123–137 (2011).
  • Neuhauser S, Kirchmair M, Gleason FH. Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems – a review. Mar. Freshwater Res.62,365–371 (2011).
  • Nagasaki K, Tomaru Y, Katanozaka N et al. Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosoleniasetigera.Appl. Environ. Microbiol.70,704–711 (2004).
  • Tomaru Y, Fujii N, Oda S, Toyoda K, Nagasaki K. Dynamics of diatom viruses on the western coast of Japan. Aquat. Microb. Ecol.63,223–230 (2011).
  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE. Transformation of the diatom Phaeodactylum tricornutum with a variety of selectable marker and reporter genes. J. Phycol.36,379–386 (2000).
  • Cerutti H, Johnson AM, Gillham NW, Boynton JE. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas.Plant Cell9,925–945 (1997).
  • Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Naviculasaprophila.J. Phycol.31,1004–1012 (1995).
  • Apt KE, Kroth-Pancic PG, Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum.Mol. Gen. Genet.252,572–579 (1996).
  • Poulsen N, Kröger N. A new molecular tool for transgenic diatoms – control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J.272,3413–3423 (2005).
  • De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. Gene silencing in the marine diatom Phaeodactylum tricornutum.Nucleic Acids Res.37,e96 (2009).
  • Kuhn SF, Brownlee C. Membrane organisation and dynamics in the marine diatom Coscinodiscus wailesii.Bot. Mar.48,297–305 (2005).
  • Gruber A, Weber T, Bartulos CR, Vugrinec S, Kroth PG. Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms. J. Basic Microbiol.49,58–72 (2009).
  • Kroth PG, Schroers Y, Kilian O. The peculiar distribution of Class 1 and Class 2 aldolases in diatoms and in red algae. Curr. Genet.48,389–400 (2005).
  • Hildebrand M, Frigeri L, Davis AK. Synchronized growth of Thalassiosira pseudonana. (Bacillariophyceae) provides novel insights into cell wall synthesis processes in relation to the cell cycle. J. Phycol.43,730–740 (2007).
  • Strickland JDH, Parsons TR. A practical handbook of sea water analysis. Bull. Fish. Res. Board Can.167,1–311 (1968).
  • Sandhage KH, Allan SM, Dickerson MB et al. Merging biological self-assembly with synthetic chemical tailoring, the potential for 3-D genetically-engineered micro/nano-devices. (3-D GEMS). Int. J. Appl. Ceram. Tech.2,317–326 (2005).
  • Lebeau T, Robert JM. Diatom cultivation and biotechnologically relevant products. Part II: current and putative products. Appl. Microbiol. Biotech.60,624–632 (2003).
  • Parker MS, Mock T, Armbrust EV. Genomic insights into marine microalgae. Annu. Rev. Genet.42,619–645 (2008).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.