326
Views
71
CrossRef citations to date
0
Altmetric
Review

Microbial paths to renewable hydrogen production

Pages 285-302 | Published online: 09 Apr 2014

Bibliography

  • Tollefson J. Hydrogen vehicles: fuel of the future?Nature464,1262–1264 (2010).
  • Kohse-Höinghaus K, Osswald P, Cool TAet al. Biofuel combustion chemistry: from ethanol to biodiesel.Angew. Chem.49(21),3572–3597 (2010).
  • Jacoby M. Filling up with hydrogen.Chem. Eng. News83,42–47 (2005).
  • Tanksale A, Beltramini JN, Lu GM. A review of catalytic hydrogen production processes from biomass.Renew. Sust. Ener. Rev.14(1),166–182 (2010).
  • Magnuson A, Anderlund M, Johansson Oet al. Biomimetic and microbial approaches to solar fuel generation.Acc. Chem. Res.42(12),1899–1909 (2009).
  • Fukuzumi S. Bioinspired energy conversion systems for hydrogen production and storage.Eur. J. Inorgan. Chem.2008(9),1351–1362 (2008).
  • Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview.Chem. Rev.107(10),4206–4272 (2007).
  • Hallenbeck PC. Fermentative hydrogen production: principles, progress, and prognosis.Int. J. Hydrogen Energy34(17),7379–7389 (2009).
  • Vignais PM. Hydrogenases and H(+)-reduction in primary energy conservation.Results Probl. Cell Differ.45,223–252 (2008).
  • Hedderich R, Forzi L. Energy-converting NiFe hydrogenases: more than just H-2 activation.J. Mol. Microbiol. Biotechnol.10(2–4),92–104 (2005).
  • Heinekey DM. Hydrogenase enzymes: recent structural studies and active site models.J. Organometallic Chem.694(17),2671–2680 (2009).
  • Böck A, King PW, Blokesch M, Posewitz MC. Maturation of hydrogenases.Adv. Microb. Physiol.51,1–71 (2006).
  • Hu YL, Fay AW, Lee CC, Yoshizawa J, Ribbe MW. Assembly of nitrogenase MoFe protein.Biochem.47(13),3973–3981 (2008).
  • Hallenbeck PC, Ghosh D. Advances in fermentative biohydrogen production: the way forward?Trends Biotechnol.27(5),287–297 (2009).
  • Meyer J. FeFe hydrogenases and their evolution: a genomic perspective.Cell. Mol. Life Sci.64(9),1063–1084 (2007).
  • Calusinska M, Happe T, Joris B, Wilmotte A. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective.Microbiology156(Pt 6),1575–1588 (2010).
  • Kapdan IK, Kargi F. Bio-hydrogen production from waste materials.Enz. Micro. Tech.38(5),569–582 (2006).
  • Li CL, Fang HHP. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures.Crit. Rev. Environ. Sci. Technol.37(1),1–39 (2007).
  • Ghosh D, Hallenbeck PC. Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineeredEscherichia coli DJT135.Int. J. Hydrogen Energy34(19),7979–7982 (2009).
  • Hallenbeck PC. Fundamentals of the fermentative production of hydrogen.Water Sci. Technol.52(1–2),21–29 (2005).
  • Schut GJ, Adams MWW. The iron-hydrogenase ofThermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production.J. Bacteriol.191(13),4451–4457 (2009).
  • Herrmann G, Jayamani E, Mai G, Buckel W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria.J. Bacteriol.190(3),784–791 (2008).
  • Hallenbeck PC, Ghosh D, Abo-Hashesh M, Wang R. Metabolic engineering for enhanced biofuels production with emphasis on the biological production of hydrogen. In:Advances in Chemistry Research Volume 6. Nova Science Publishers, Hauppauge, NY, USA125–154 (2011).
  • Logan BE, Call D, Cheng Set al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter.Environ. Sci. Technol.42(23),8630–8640 (2008).
  • Hong Liu H, Hu H, Chignell J, Fan Y. Microbial electrolysis: novel technology for hydrogen production from biomass.Biofuels1(1),129–142 (2010).
  • Geelhoed JS, Hamelers HVM, Stams AJM. Electricity-mediated biological hydrogen production.Curr. Opin. Microbiol.13(3),307–315 (2010).
  • Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems.Appl. Microbiol. Biotechnol.85(6),1665–1671 (2010).
  • Logan BE. Exoelectrogenic bacteria that power microbial fuel cells.Nat. Rev. Microbiol.7(5),375–381 (2009).
  • Wang AJ, Sun D, Ren NQet al. A rapid selection strategy for an anodophilic consortium for microbial fuel cells.Bioresour. Technol.101(14),5733–5735 (2010).
  • Lu L, Xing DF, Xie TH, Ren NQ, Logan BE. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells.Biosens. Bioelectron.25(12),2690–2695 (2010).
  • Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis.Environ. Sci. Technol.43(10),3953–3958 (2009).
  • Cao XX, Huang X, Liang Pet al. A new method for water desalination using microbial desalination cells.Environ. Sci. Technol.43(18),7148–7152 (2009).
  • Call D, Logan BE. Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane.Environ. Sci. Technol.42(9),3401–3406 (2008).
  • Hu H, Fan Y, Liu H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells.Water Res.42(15),4172–4178 (2008).
  • Lee HS, Rittmann BE. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.Environ. Sci. Technol.44(3),948–954 (2010).
  • Selembo PA, Merrill MD, Logan BE. The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells.J. Power Sources190(2),271–278 (2009).
  • Jeremiasse AW, Hamelers HVM, Buisman CJN. Microbial electrolysis cell with a microbial biocathode.Bioelectrochemistry78(1),39–43 (2010).
  • Jeremiasse AW, Hamelers HVM, Kleijn JM, Buisman CJN. Use of biocompatible buffers to reduce the concentration overpotential for hydrogen evolution.Environ. Sci. Technol.43(17),6882–6887 (2009).
  • Ghirardi ML, Dubini A, Yu JP, Maness PC. Photobiological hydrogen-producing systems.Chem. Soc. Rev.38(1),52–61 (2009); Erratum in:38(12),3505 (2009).
  • Ghirardi ML, Mohanty P. Oxygenic hydrogen photoproduction – current status of the technology.Curr. Sci.98(4),499–507 (2010).
  • McKinlay JB, Harwood CS. Photobiological production of hydrogen gas as a biofuel.Curr. Opin. Biotechnol.21(3),244–251 (2010).
  • Beer LL, Boyd ES, Peters JW, Posewitz MC. Engineering algae for biohydrogen and biofuel production.Curr. Opin. Biotechnol.20(3),264–271 (2009).
  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC. Genetic engineering of algae for enhanced biofuel production.Eukaryotic Cell9(4),486–501 (2010).
  • Wijffels RH, Barbosa MJ, Eppink MHM. Microalgae for the production of bulk chemicals and biofuels.Biofuels Bioprod. Bior.4(3),287–295 (2010).
  • Angermayr SA, Hellingwerf KJ, Lindblad P, de Mattos MJT. Energy biotechnology with cyanobacteria.Curr. Opin. Biotechnol.20(3),257–263 (2009).
  • Atsumi S, Higashide W, Liao JC. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde.Nat. Biotechnol.27(12),1177–1180 (2009).
  • Mariscal V, Flores F. Multicellularity in a heterocyst-forming cyanobacterium: pathways for intercellular communication. In:Recent Advances in Phototrophic Prokaryotes. Hallenbeck PC (Ed.). Springer, Berlin, Germany (2010).
  • Kumar K, Mella-Herrera RA, Golden JW. Cyanobacterial heterocysts.Cold Spring Harb. Perspect. Biol.2(4),a000315 (2010).
  • Lopez-Igual R, Flores E, Herrero A. Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts ofAnabaena sp.J. Bacteriol.192(20),5526–5533 (2010).
  • Summers ML, Wallis JG, Campbell EL, Meeks JC. Genetic evidence of a major role for glucose-6-phosphate-dehydrogenase in nitrogen-fixation and dark growth of the cyanobacteriumNostoc sp. strain ATCC-29133.J. Bacteriol.177(21),6184–6194 (1995).
  • Ludwig M, Schulz-Friedrich R, Appel J. Occurrence of hydrogenases in cyanobacteria and anoxygenic photosynthetic bacteria: implications for the phylogenetic origin of cyanobacterial and algal hydrogenases.J. Mol. Evol.63(6),758–768 (2006).
  • Benemann JR, Weare NM. Hydrogen evolution by nitrogen-fixingAnabaena cylindrica cultures.Science184,174–175 (1974).
  • Weissman JC, Benemann JR. Hydrogen production by nitrogen-starved cultures ofAnabaena cylindrica.Appl. Environ. Microbiol.33(1),123–131 (1977).
  • Miyamoto K, Hallenbeck PC, Benemann JR. Solar-energy conversion by nitrogen-limited cultures ofAnabaena cylindrica.J. Ferm. Technol.57(4),287–293 (1979).
  • Yoon JH, Hae Shin J, Kim MS, Jun Sim S, Park TH. Evaluation of conversion efficiency of light to hydrogen energy byAnabaena variabilis.Int. J. Hydrogen Energy31(6),721–727 (2006).
  • Berberoglu H, Jay J, Pilon L. Effect of nutrient media on photobiological hydrogen production byAnabaena variabilis ATCC 29413.Int. J. Hydrogen Energy33(4),1172–1184 (2008).
  • Sakurai H, Masukawa H. Promoting R & D in photobiological hydrogen production utilizing mariculture-raised cyanobacteria.Mar. Biotechnol.9(2),128–145 (2007).
  • Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK. Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions.Biotechnol. Bioeng.80(7),777–783 (2002)
  • Min HT, Sherman LA. Hydrogen production by the unicellular, diazotrophic cyanobacteriumCyanothece sp. strain ATCC 51142 under conditions of continuous light.Appl. Environ. Microbiol.76(13),4293–4301 (2010).
  • Schwarz S, Poss Z, Hoffmann D, Appel J. Hydrogenases and hydrogen metabolism in photosynthetic prokaryotes. In:Recent Advances in Phototrophic Prokaryotes. Hallenbeck PC (Ed.). Springer, Berlin, Germany (2010).
  • Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR. Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacteriumPlectonema boryanum.Appl. Biochem. Biotechnol.162(1),208–220 (2010).
  • McNeely K, Xu Y, Bennette N, Bryant DA, Dismukes GC. Redirecting reductant flux into hydrogen production via metabolic engineering of fermentative carbon metabolism in a cyanobacterium.Appl. Environ. Microbiol.76(15),5032–5038 (2010).
  • Melis A, Zhang LP, Forestier M, Ghirardi ML, Seibert M. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green algaChlamydomonas reinhardtii.Plant Physiol.122(1),127–135 (2000).
  • Melis A. Photosynthetic H-2 metabolism inChlamydomonas reinhardtii (unicellular green algae).Planta226(5),1075–1086 (2007).
  • Kruse O, Hankamer B. Microalgal hydrogen production.Curr. Opin. Biotechnol.21(3),238–243 (2010).
  • Chochois V, Dauvillee D, Beyly Aet al. Hydrogen production inChlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism.Plant Physiol.151(2),63, 1–640 (2009).
  • Jans F, Mignolet E, Houyoux PAet al. A type II NAD(P) H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast ofChlamydomonas.Proc. Natl Acad. Sci. USA105(51),20546–20551 (2008).
  • Peltier G, Tolleter D, Billon E, Cournac L. Auxiliary electron transport pathways in chloroplasts of microalgae.Photosynth. Res.106(1–2),19–31 (2010).
  • Nagy LE, Meuser JE, Plummer Set al. Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries.Biotechnol. Lett.29(3),421–430 (2007).
  • Boyd ES, Spear JR, Peters JW. FeFe hydrogenase genetic diversity provides insight into molecular adaptation in a saline microbial mat community.Appl. Environ. Microbiol.75(13),4620–4623 (2009).
  • Constant P, Chowdhury SP, Pratscher J, Conrad R.Streptomycetes contributing to atmospheric molecular hydrogen soil uptake are widespread and encode a putative high-affinity NiFe-hydrogenase.Environ. Microbiol.12(3),821–829 (2010).
  • Li RY, Fang HHP. Heterotrophic photo fermentative hydrogen production.Crit. Rev. Environ. Sci. Technol.39(12),1081–1108 (2009).
  • Laguna R, Joshi GS, Dangel AW, Amanda K. Luther AK, Tabita FR. Integrative control of carbon, nitrogen, hydrogen, and sulfur metabolism: the central role of the Calvin–Benson–Bassham cycle. In:Recent Advances in Phototrophic Prokaryotes. Hallenbeck PC (Ed.). Springer, Berlin, Germany (2010).
  • McKinlay JB, Harwood CS. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria.Proc. Natl Acad. Sci. USA107(26),11669–11675 (2010).
  • Sabourin-Provost G, Hallenbeck PC. High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation.Bioresour. Technol.100(14),3513–3517 (2009).
  • Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application.Int. J. Hydrogen Energy29(2),173–185 (2004); Erratum in:Int. J. Hydrogen Energy29(13),1425–1426 (2004).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.