396
Views
68
CrossRef citations to date
0
Altmetric
Perspective

Thermochemical processing of macroalgae: a late bloomer in the development of third-generation biofuels?

, , &
Pages 441-461 | Published online: 09 Apr 2014

References

  • Solomon S, Qin D, Manning M et al.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge, UK (2007).
  • Owen NA, Inderwildi OR, King DA. The status of conventional world oil reserves –hype or cause for concern? Energy Policy38(8),4743–4749 (2010).
  • McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour. Technol.83(1),47–54 (2002).
  • Haveren JV, Scott EL, Sanders J. Bulk chemicals from biomass. Biofuels Bioprod. Bioref.2,41–57 (2008).
  • Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science330,1222–1227 (2010).
  • Balat M, Balat M, Kırtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Convers. Manage.50(12),3147–3157 (2009).
  • Bridgwater AV. Biomass for energy. J. Sci. Food Agric.86,1755–1768 (2006).
  • Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy38,1–27 (2011).
  • Goyal HB, Seal D, Saxena RC. Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sust. Energy Rev.12(2),504–517 (2008).
  • Butler E, Devlin G, Meier D, McDonnell K. A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading. Renew. Sust. Energy Rev.15(8),4171–4186 (2011).
  • Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels20(3),848–889 (2006).
  • Inguanzo M, Domínguez A, Menéndez JA, Blanco CG, Pis JJ. On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J. Anal. Appl. Pyrol.63(1),209–222 (2002).
  • Pattiya A, Titiloye J, Bridgwater AV. Fast pyrolysis of cassava rhizome in the presence of catalysts. J. Anal. Appl. Pyrol.81(1),72–79 (2008).
  • Zhang H, Xiao R, Huang H, Xiao G. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour. Technol.100(3),1428–1434 (2009).
  • Kirszensztejn P, Przekop R, Tolińska A, Maćkowska E. Pyrolytic and catalytic conversion of rape oil into aromatic and aliphatic fractions in a fixed bed reactor on Al2O3 and Al2O3/B2O3 catalysts. Chem. Pap.63(2),226–232 (2009).
  • Wang J, Zhang M, Chen M et al. Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass. Thermochim. Acta444(1),110–114 (2006).
  • Nowakowski DJ, Jones JM, Brydson RMD, Ross AB. Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel86(15),2389–2402 (2007).
  • Murata K, Somwongsa P, Larpkiattaworn S, Liu Y, Inaba M. Analyses of liquid products from catalytic pyrolysis of Jatropha seed cakes. Energy Fuels25,5429–5437 (2011).
  • Pütün E. Catalytic pyrolysis of biomass: effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy35(7),2761–2766 (2010).
  • Demiral I, Sensöz S. The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse). Bioresour. Technol.99(17),8002–8007 (2008).
  • Williams PT, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy25,493–513 (2000).
  • Pan P, Hu C, Yang W et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour. Technol.101(12),4593–4599 (2010).
  • Babich IV, van der Hulst M, Lefferts L et al. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy35(7),3199–3207 (2011).
  • Lee HW, Jeon J-K, Park SH et al. Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS. Nanoscale Res. Lett.6(1),500 (2011).
  • Park HJ, Dong J-I, Jeon J-K et al. Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chem. Eng. J.143,124–132 (2008).
  • Miao X, Wu Q, Changyan Y. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrol.71(2),855–863 (2004).
  • Grierson S, Strezov V, Shah P. Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresour. Technol.102(17),8232–8240 (2011).
  • Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems – a review. Mitigat. Adapt. Strat. Global Change11(2),403–427 (2006).
  • Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem.12(4),539–554 (2010).
  • Bridgwater AV. Biomass fast pyrolysis. Therm. Sci.8(2),21–49 (2004).
  • Furimsky E. Catalytic hydrodeoxygenation. Appl. Catal. A Gen.199(2),147–190 (2000).
  • Nokkosmäki MI, Kuoppala ET, Leppämäki EA, Krause AOI. Catalytic conversion of biomass pyrolysis vapours with zinc oxide. J. Anal. Appl. Pyrol.55(1),119–131 (2000).
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev.106(9),4044–4098 (2006).
  • Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manage.48(1),87–92 (2007).
  • Bulushev DA, Ross JRH. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal. Today171(1),1–13 (2011).
  • Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers. Manage.41(6),633–646 (2000).
  • Wang Y, Li X, Mourant D et al. Formation of aromatic structures during the pyrolysis of bio-oil. Energy Fuels26(1),241–247 (2011).
  • Huber GW, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed.46(38),7184–7201 (2007).
  • Hu C, Yang Y, Luo J et al. Recent advances in the catalytic pyrolysis of biomass. Front. Chem. Sci. Eng.5(2),188–193 (2011).
  • Shi K, Shao S, Huang Q et al. Review of catalytic pyrolysis of biomass for bio-oil. Presented at: 2011 International Conference on Materials for Renewable Energy and Environment. Shanghai, China, 20–22 May 2011.
  • Samolada MC, Papafotica A, Vasalos IA. Catalyst evaluation for catalytic biomass pyrolysis. Energy Fuels14(10),1161–1167 (2000).
  • Du J, Liu P, Liu Z-H, Sun D-G, Tao C-Y. Fast pyrolysis of biomass for bio-oil with ionic liquid and microwave irradiation. J. Fuel Chem. Technol.38(5),554–559 (2010).
  • Wang P, Zhan S, Yu H, Xue X, Hong N. The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue). Bioresour. Technol.101(9),3236–3241 (2010).
  • Yin S, Dolan R, Harris M, Tan Z. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: effects of conversion parameters on bio-oil yield and characterization of bio-oil. Bioresour. Technol.101(10),3657–3664 (2010).
  • Duan P, Savage PE. Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind. Eng. Chem. Res.50,52–61 (2011).
  • Kruse A, Gawlik A. Biomass conversion in water at 330–410°C and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res.42(2),267–279 (2003).
  • Blaschek HP, Ezeji T, Scheffran J. Biofuels from Agricultural Wastes and Byproducts. Wiley-Blackwell, IO, USA, 208–211 (2010).
  • Zhang B, von Keitz M, Valentas K. Thermochemical liquefaction of high-diversity grassland perennials. J. Anal. Appl. Pyrol.84(1),18–24 (2009).
  • Jena U, Das KC. Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels25,5472–5482 (2011).
  • Yang Y, Feng C, Inamori Y, Maekawa T. Analysis of energy conversion characteristics in liquefaction of algae. Resour. Conserv. Recy.43(1),21–33 (2004).
  • Ogi T, Yokoyama S, Koguchi K. Direct liquefaction of wood by alkaline earth salt in an aqueous phase. Chem. Lett.14(8),1199–1202 (1985).
  • Karagöz S, Bhaskar T, Muto A, Sakata Y. Catalytic hydrothermal treatment of pine wood biomass: effect of RbOH and CsOH on product distribution. J. Chem. Technol. Biotech.80(10),1097–1102 (2005).
  • Karagöz S, Bhaskar T, Muto A, Sakata Y. Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresour. Technol.97(1),90–98 (2006).
  • Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy36(5),2328–2342 (2011).
  • Balat M, Balat M, Kırtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: gasification systems. Energy Convers. Manage.50(12),3158–3168 (2009).
  • Demirbas A. Biorefineries: current activities and future developments. Energy Convers. Manage.50(11),2782–2801 (2009).
  • Kreutz TG, Larson ED, Liu G, Williams R. Fischer-Tropsch fuels from coal and biomass. Presented at: 25th Annual International Pittsburgh Coal Conference. Pittsburgh, PA, USA, 29 September–2 October 2008.
  • Karayıldırım T, Sınag A, Kruse A. Char and coke formation as unwanted side reaction of the hydrothermal biomass gasification. Chem. Eng. Technol.31(11),1561–1568 (2008).
  • Elliott DC, Neuenschwander GG, Hart TR et al. Chemical processing in high-pressure aqueous environments. 7. Process development for catalytic gasification of wet biomass feedstocks. Ind. Eng. Chem. Res.43(9),1999–2004 (2004).
  • Sutton D, Kelleher B, Ross JRH. Review of literature on catalysts for biomass gasification. Fuel Process. Technol.73(3),155–173 (2001).
  • de Lasa H, Salaices E, Mazumder J, Lucky R. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics. Chem. Rev.111(9),5404–5433 (2011).
  • Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel81(8),1051–1063 (2002).
  • Demirbaş A. Calculation of higher heating values of biomass fuels. Fuel76(5),431–434 (1997).
  • Giampietro M, Mayumi K. The Biofuel Delusion: The Fallacy of Large-Scale Agro-Biofuel Production. Earthscan, London, UK (2009).
  • Mackay DJC. Sustainable Energy – Without the Hot Air. UIT, Cambridge, UK (2009).
  • Budarin VL, Zhao Y, Gronnow MJ et al. Microwave-mediated pyrolysis of macro-algae. Green Chem.13,2330–2333 (2011).
  • Gao K, McKinley KR. Use of macroalgae for marine biomass production and CO2 remediation: a review. J. Appl. Phycol.6,45–60 (1994).
  • Ross AB, Jones JM, Kubacki M, Bridgeman T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol.99(14),6494–6504 (2008).
  • Li D, Chen L, Zhao J et al. Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China. Chem. Eng. Res. Des.88(5–6),647–652 (2010).
  • Chapman VJ. Seaweeds and their uses. Aqua. Botany12,389–390 (1982).
  • Wilcox HA. The ocean as a supplier of food and energy. Experientia38(1),31–35 (1982).
  • Buck BH, Buchholz CM. The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J. Appl. Phycol.16,355–368 (2004).
  • The Department of Energy and Climate Change. 2050 Pathways Analysis. HM Government, London, UK (2010).
  • Aresta M, Dibenedetto A, Barberio G. Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study. Fuel Process. Technol.86,1679–1693 (2005).
  • Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME. Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour. Technol.96(16),1796–1803 (2005).
  • Ross AB, Anastasakis K, Kubacki M, Jones JM. Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J. Anal. Appl. Pyrol.85,3–10 (2009).
  • Xu D, Gao Z, Zhang X et al. Evaluation of the potential role of the macroalga Laminaria japonica for alleviating coastal eutrophication. Bioresour. Technol.102(21),9912–9918 (2011).
  • Li D, Chen L, Yi X, Zhang X, Ye N. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour. Technol.101(18),7142–7136 (2010).
  • Singh A, Nigam PS, Murphy JD. Renewable fuels from algae: an answer to debatable land based fuels. Bioresour. Technol.102(1),10–16 (2011).
  • Chen Y-C. The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chem.131(1),211–219 (2012).
  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ. Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface7(46),703–726 (2010).
  • Smith B, Greenwell HC, Whiting A. Catalytic upgrading of tri-glycerides and fatty acids to transport biofuels. Energy Environ. Sci.2(3),262–271 (2009).
  • Bastianoni S, Coppola F, Tiezzi E et al. Biofuel potential production from the Orbetello lagoon macroalgae: a comparison with sunflower feedstock. Biomass Bioenergy32(7),619–628 (2008).
  • Suganya T, Renganathan S. Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca. Bioresour. Technol.107,319–326(2011).
  • Maceiras R, Rodríguez M, Cancela A, Urréjola S, Sánchez A. Macroalgae: raw material for biodiesel production. Appl. Energy88(10),3318–3323 (2011).
  • Kovacevic V, Wesseler J. Cost–effectiveness analysis of algae energy production in the EU. Energy Policy38(10),5749–5757 (2010).
  • Black WAP. The seasonal variation in weight and chemical composition of the common British Laminariaceae. J. Mar. Biol. Ass. UK29,45–72 (1950).
  • Black WAP, Mitchell RL. Trace elements in the common brown alae and in the sea water. J. Mar. Biol. Ass. UK30(3),575–584 (1952).
  • Adams JMM, Ross AB, Anastasakis K et al. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour. Technol.102(1),226–234 (2011).
  • Horn SJ. Bioenergy from Brown Seaweeds. Department of Biotechnology, Norweigian University of Science and Technology, Trondheim, Norway (2000).
  • Demirbas A. Use of algae as biofuel sources. Energy Convers. Manage.51(12),2738–2749 (2010).
  • Bora K, Jeong J, Shin S et al. Facile single-step conversion of macroalgal polymeric carbohydrates into biofuels. Chem. Sust. Chem.3(11),1273–1275 (2010).
  • Adams JM, Gallagher JA, Donnison IS. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol.21(5),569–574 (2009).
  • Østgaard K, Indergaard M, Markussen S, Knutsen SH, Jensen A. Carbohydrate degradation and methane production during fermentation of Laminaria saccharina (Laminariales, Phaeophyceae). J. Appl. Phycol.5(3),333–342 (1993).
  • Woodward FN. The Scottish Seaweed Research Association. J. Mar. Biol. Ass. UK29(3),719–725 (1951).
  • Stanford ECC. Chem. News Lond.5(121),167 (1862).
  • Stanford ECC. On the economic applications of seaweed. J. Soc. Arts10,185–195 (1862).
  • Spencer GC. Potash from kelp: III – the preliminary examination of kelp distillates. J. Ind. Eng. Chem.12(8),786–792 (1920).
  • Turrentine JW, Schoaff PS. Potash from kelp: the experimental plant of the United States Department of Agriculture. Preliminary paper. J. Ind. Eng. Chem.11(9),864–874 (1919).
  • Tupholme CHS. Carbonization of seaweed. Chem. Met. Eng.32,81–82 (1926).
  • Guiry MD, Blunden G. Seaweed Resources in Europe: Uses and Potential. John Wiley & Sons Ltd, Chichester, UK (1991).
  • Bird CJ, Helleur RJ, Hayes ER, McLachlan J. Analytical pyrolysis as a taxonomic tool in Gracilaria (Rhodophyta: Gigartinales). Hydrobiologia151/152(1),207–211 (1987).
  • Nichols HW, Anderson DJ, Shaw JI, Sommerfield MR. Pyrolysis-gas-liquid chromatographic analysis of Chlorophycean and Rhodophycean algae. J. Phycol.4(4),362–368 (1968).
  • Helleur RJ, Hayes ER, Jamieson WD, Craigie JS. Analysis of polysaccharide pyrolysate of red algae by capillary gas chromatography-mass spectrometry. J. Anal. Appl. Pyrol.8,333–347 (1985).
  • Helleur RJ, Hayes ER, Craigie JS, McLachlan JL. Characterization of polysaccharides of red algae by pyrolysis-capillary gas chromatography. J. Anal. Appl. Pyrol.8,349–357 (1985).
  • Hardy FG, Scott GW, Sisson PR, Lightfoot NF. Pyrolysis mass spectrometry as a technique for studying inter- and intraspecific relationships in the genus fucus. J. Mar. Biolog. Assoc. U.K.78(1),35–42 (1998).
  • Morgan PJ, Smith K. Potentiality of seaweed as a resource: analysis of the pyrolysis products of Fucus serratus. Analyst103,1053–1060 (1978).
  • Demirbas MF. Biofuels from algae for sustainable development. Appl. Energy88(10),3473–3480 (2011).
  • Bae YJ, Ryu C, Jeon J-K et al. The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour. Technol.102(3),3512–3520 (2011).
  • Anastasakis K, Ross AB, Jones JM. Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel90(2),598–607 (2011).
  • Soares JP, Santos JE, Chierice GO, Cavalheiro ETG. Thermal behavior of alginic acid and its sodium salt. Ecl. Quím. São Paulo29(2),53–56 (2004).
  • Ross AB, Hall C, Anastasakis K et al. Influence of cation on the pyrolysis and oxidation of alginates. J. Anal. Appl. Pyrol.91(2),344–351 (2011).
  • Said AA, Hassan RM. Thermal decomposition of some divalent metal alginate gel compounds. Polym. Deg. Stab.39(3),393–397 (1993).
  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R. Algal biochar –production and properties. Bioresour. Technol.102(2),1886–1891 (2011).
  • Bird MI, Wurster CM, De Paula Silva PH, Paul NA, De Nys R. Algal biochar: effects and applications. GCB Bioenergy4(1),61–69 (2011).
  • Ye N, Li D, Chen L, Zhang X, Xu D. Comparative studies of the pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa. PLoS ONE5(9),1–6 (2010).
  • Wang S, Jiang XM, Wang N et al. Research on pyrolysis characteristics of seaweed. Energy Fuels21(6),3723–3729 (2007).
  • Li D, Chen L, Zhang X, Ye N, Xing F. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenergy35(5),1765–1772 (2011).
  • Wang J, Wang G, Zhang M et al. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process. Biochem.41(8),1883–1886 (2006).
  • Zhao H, Yan H, Liu M, Zhang C, Qin S. Pyrolytic characteristics and kinetics of the marine green tide macroalgae, Enteromorpha prolifera. Chin. J. Oceanol. Limnol.29(5),996–1001 (2011).
  • Zhao H, Yan H, Dong S et al. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J. Therm. Anal. Calorim. doi:10.1007/s10973-011-2102-8 (2011) (Epub ahead of print).
  • Jun W, Mingqiang C, Shaomin L et al. Pyrolysis of Ulva rigida by microwave heating. Presented at: 2011 International Conference on Materials for Renewable Energy and Environment. Shanghai, China, 20–22 May 2011.
  • Wang S, Jiang XM, Han XX, Liu JG. Combustion characteristics of seaweed biomass. 1. Combustion characteristics of Enteromorpha clathrata and Sargassum natans. Energy Fuels23(10),5173–5178 (2009).
  • Catallo WJ, Shupe T, Eberhardt TL. Hydrothermal processing of biomass from invasive aquatic plants. Biomass Bioenergy32(2),140–145 (2008).
  • Anastasakis K, Ross AB. Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour. Technol.102(7),4876–4883 (2011).
  • Vaezi M, Passandideh-Fard M, Moghiman M, Charmchi M. Gasification of heavy fuel oils: a thermochemical equilibrium approach. Fuel90(2),878–885 (2011).
  • Li D, Chen L, Xu D et al. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patensC. Agardh. Bioresour. Technol.104,737–742 (2011).
  • Aresta M, Dibenedetto A, Carone M, Colonna T, Fragale C. Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ. Chem. Lett.3(3),136–139 (2005).
  • Zhou D, Zhang L, Zhang S, Fu H, Chen J. Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuels24(7),4054–4061 (2010).
  • Zhou D, Zhang S, Fu H, Chen J. Liquefaction of macroalgae Enteromorpha prolifera in sub-/supercritical alcohols: direct production of ester compounds. Energy Fuels26(4),2342–2351 (2012).
  • Schumacher M, Yanık J, Sınağ A, Kruse A. Hydrothermal conversion of seaweeds in a batch autoclave. J. Supercrit. Fluid58(1),131–135 (2011).
  • Yanik J, Ebale S, Kruse A, Saglam M, Yuksel M. Biomass gasification in supercritical water. Part 1. Effect of the nature of biomass. Fuel86(15),2410–2415 (2007).
  • Bruhn A, Dahl J, Nielsen HB et al. Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour. Technol.102(3),2595–2604 (2011).
  • Yu LJ, Wang S, Jiang XM, Wang N, Zhang CQ. Thermal analysis studies on combustion characteristics of seaweed. J. Therm. Anal. Calorim.93(2),611–617 (2008).
  • Conesa JA, Domene A. Biomasses pyrolysis and combustion kinetics through n-th order parallel reactions. Thermochim. Acta523,176–181 (2011).
  • Lamare MD, Wing SR. Calorific content of New Zealand marine macrophytes. N. Z. J. Mar. Freshwater Res.35(2),335–341 (2001).
  • Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev.107(6),2411–2502 (2007).
  • Binder JB, Raines RT. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc.131(5),1979–1985 (2009).
  • Robinson JM, Banuelos E, Barber WC et al. Chemical conversion of biomass polysaccharides to liquid hydrocarbon fuels and chemicals. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem.44(2),224–227 (1999).
  • Demirbaş A. Production of biodiesel from algae oils. Energy Source A.31(2),163–168 (2008).
  • Daneshvar S, Salak F, Ishii T, Otsuka K. Application of subcritical water for conversion of macroalgae to value-added materials. Ind. Eng. Chem. Res.51(1),7–84 (2011).
  • Hui Z, Huaxiao Y, Mengmeng Z, Song Q. Pyrolysis characteristics and kinetics of macroalgae biomass using thermogravimetric analyzer. Proc. World. Acad. Sci. Eng. Technol.65,1161–1166 (2010).
  • Peng W, Wu Q, Tu P, Zhao N. Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour. Technol.80(1),1–7 (2001).
  • Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour. Technol.101(1),359–365 (2010).
  • Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J. Therm. Anal. Calorim.98(1),325–330 (2009).
  • Sharma A, Rao TR. Kinetics of pyrolysis of rice husk. Bioresour. Technol.67,53–59 (1999).
  • Shuangning X, Zhihe L, Baoming L, Weiming Y, Xueyuan B. Devolatilization characteristics of biomass at flash heating rate. Fuel85,664–670 (2006).
  • Zabaniotou AA, Kantarelis EK, Theodoropoulos DC. Sunflower shells utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics. Bioresour. Technol.99(8),3174–3181 (2008).
  • Orfao JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials – three independent reactions model. Ind. Eng. Chem Res.78,349–358 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.