287
Views
71
CrossRef citations to date
0
Altmetric
Review

Cellulases from Penicillium species for producing fuels from biomass

&
Pages 463-477 | Published online: 09 Apr 2014

References

  • Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Biores. Technol.101(6),1570–1580 (2010).
  • Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew. Sust. Energy Rev.14(2),578–597 (2010).
  • Zhang YHP. What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochem.46(11),2091–2110 (2011).
  • Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang P. Bioethanol production from pentose sugars: current status and future prospects. Renew. Sust. Energy Rev.15(9),4950–4962 (2011).
  • Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol.108,41–65 (2007).
  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev.66(3),506–577 (2002).
  • Zhang YHP, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv.24(5),452–481 (2006).
  • Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol.108,95–120 (2007).
  • Gusakov AV, Salanovich TN, Antonov AI et al. Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol. Bioeng.97(5),1028–1038 (2007).
  • Margeot A, Hahn-Hagerdal B, Edlund M, Slade R, Monot F. New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol.20(3),372–380 (2009).
  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik. Hemicelluloses for fuel ethanol: a review. Biores. Technol.101(13),4775–4800 (2010).
  • Berlin A, Gilkes N, Kilburn D et al. Evaluation of novel fungal cellulase preparations for ability to hydrolyze softwood substrates – evidence for the role of accessory enzymes. Enzyme Microb. Technol.37(2),175–184 (2005).
  • Gusakov AV. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol.29(9),419–425 (2011).
  • Houbraken J, Samson RA. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies Mycol.70(1),1–51 (2011).
  • Godfrey T, West S. Industrial Enzymology (2nd Edition). Macmillan Press Ltd, London, UK (1996).
  • Chávez R, Bull P, Eyzaguirre J. The xylanolytic enzyme system from the genus Penicillium. J. Biotechnol.123(4),413–433 (2006).
  • Hamlyn PF, Wales DS, Sagar BF. Extracellular enzymes of Penicillium. In: Penicillium and Acremonium. Peberdy JF (Ed.). Plenum Press, NY, USA, 245–284 (1987).
  • Rao M, Gaikwad S, Mishra C, Deshpande V. Induction and catabolite repression of cellulase in Penicillium funiculosum. Appl. Biochem. Biotechnol.19(2),129–137 (1988).
  • Chaabouni ES, Hadj-Talieb N, Mosrati R, Ellouz R. Preliminary assessment of Penicillium occitanis cellulase: a further useful system. Enzyme Microb. Technol.16(6),538–542 (1994).
  • Pereira, JF, de Queiroz MV, Gomes EA, Muro-Abad JI, de Araújo EF. Molecular characterization and evaluation of pectinase and cellulase production of Penicillium spp. Biotechnol. Lett.24(10),831–838 (2002).
  • Krogh KBR, Mørkeberg A, Jørgensen H, Frisvad JHC, Olsson L. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol.114(1–3),389–401 (2004).
  • Jørgensen H, Mørkeberg A, Krogh KBR, Olsson L. Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb. Technol.36(1),42–48 (2005).
  • Solov’eva IV, Okunev ON, Vel’kov VV et al. The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Microbiology74(2),141–146 (2005).
  • Sehnem NT, de Bittencourt LR, Camassola M, Dillon AJP. Cellulase production by Penicillium echinulatum on lactose. Appl. Microbiol. Biotechnol.72(1),163–167 (2006).
  • Hou Y, Wang T, Long H, Zhu H. Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim. Biophys. Sin.39(2),101–107 (2007).
  • Adsul MG, Bastawde KB, Varma AJ, Gokhale DV. Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Biores. Technol.98(7),1467–1473 (2007).
  • Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S. Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J. Ind. Microbiol. Biotechnol.35(4),275–282 (2008).
  • Daynes CM, McGee PA, Midgley DJ. Utilization of plant cell-wall polysaccharides and organic phosphorous substrates by isolates of Aspergillus and Penicillium isolated from soil. Fung. Ecol.1(2–3),94–98 (2008).
  • Sun X, Liu Z, Zheng K, Song X, Qu Y. The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol.42(7),560–567 (2008).
  • Liu YT, Luo ZY, Long CN, Wang HD, Long MN, Hu Z. Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. New Biotechnol.28(6),733–737 (2011).
  • Jørgensen H, Olsson L. Production of cellulases by Penicillium brasilianum IBT 20888 – effect of substrate on hydrolytic performance. Enzyme Microb. Technol.38(3–4),381–390 (2006).
  • Camassola M, Dillon AJP. Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. J. Appl. Microbiol.103(6),2196–2204 (2007).
  • Camassola M, Dillon AJP. Effect of methylxanthines on production of cellulases by Penicillium echinulatum. J. Appl. Microbiol.102(2),478–485 (2007).
  • Dillon AJP, Bettio M, Pozzan FG, Andrighetti T, Camassola M. A new Penicillium echinulatum strain with faster cellulase secretion obtained using hydrogen peroxide mutagenesis and screening with 2-deoxyglucose. J. Appl. Microbiol.111(1),48–53 (2011).
  • De Castro AM, de Carvalho ML, Leite SGF, Pereira N. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J. Ind. Microbiol. Biotechnol.37(2),151–158 (2010).
  • Singhvi MS, Adsul MG, Gokhale DV. Comparative production of cellulases by mutants of Penicillium janthinellum NCIM 1171 and its application in hydrolysis of Avicel and cellulose. Biores. Technol.102(11),6569–6572 (2011).
  • Brown JA, Collin SA, Wood TM. Development of a medium for high cellulase, xylanase and β-glucosidase production by a mutant strain (NTG III/6) of the cellulolytic fungus Penicillium pinophilum. Enzyme Microb. Technol.9(6),355–360 (1987).
  • Esterbauer H, Steiner W, Labudova I, Hermann A, Hayn M. Production of Trichoderma cellulase in laboratory and pilot scale. Biores. Technol.26(1),51–65 (1991).
  • Martinez D, Berka RM, Henrissat B et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol.26(5),553–560 (2008).
  • Suto M, Tomita F. Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng.92(4),305–311 (2001).
  • Wei X, Zheng K, Chen M et al. Transcription analysis of lignocellulolytic enzymes of Penicillium decumbens 114-2 and its catabolite-repression-resistant mutant. C. R. Biol.334(11),806–811 (2011).
  • Suto M, Yachi M, Kamagata Y, Sasaki H, Takao S, Tomita F. Cellulase induction by soluble acetyl cellobioses in Penicillium purpurogenum. J. Ferment. Bioeng.72(5),352–357 (1991).
  • Van Peij NNME, Gielkens MMC, de Vries RP, Visser J, de Graaf LH. The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl. Environ. Microbiol.64(10),3615–3619 (1998).
  • Marui J, Kitamoto N, Kato M, Kobayashi T, Tsukagoshi N. Transcriptional activator, AoXlnR, mediates cellulose-inductive expression of the xylanolytic and cellulolytic genes in Aspergillus oryzae. FEBS Lett.528(1–3),279–282 (2002).
  • Vinetsky YP, Rozhkova AM, Chulkin AM et al. Regulatory activity of heterologous gene-activator xlnR of Aspergillus niger in Penicillium canescens. Biochemistry (Moscow)74(8),882–887 (2009).
  • Krogh KBRM, Kastberg H, Jørgensen CI, Berlin A, Harris PV, Olssen L. Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins. Enzyme Microb. Technol.44(6–7),359–367 (2009).
  • Tanaka H, Nakamura T, Hayashi S, Ohta K. Purification and properties of an extracellular endo-1,4-β-xylanase from Penicillium citrinum and characterization of the encoding gene. J. Biosci. Bioeng.100(6),623–630 (2005).
  • Jørgensen H, Mørkeberg A, Krogh KBR, Olsson L. Growth and enzyme production by three Penicillium species on monosaccharides. J. Biotechnol.109(3),295–299 (2004).
  • Peterson R, Nevalainen H. Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology158(1),58–68 (2012).
  • Chulkin AM, Vavilova EA, Benevolenskij SV. Transcriptional regulator of carbon catabolite repression CreA of filamentous fungus Penicillium canescens. Mol. Biol.44(4),596–605 (2010).
  • Wood TM, McCrae SI. Purification and some properties of a 1,4-β-D-glucan glucohydrolase associated with the cellulase from the fungus Penicillium funiculosum. Carbohydr. Res.110(2),291–303 (1982).
  • Wood TM, McCrae SI. Purification and properties of a cellobiohydrolase from Penicillium pinophilum. Carbohydr. Res.148(2),331–344 (1986).
  • Mishra C, Rao M. Mode of action and synergism of cellulases from Penicillium funiculosum. Appl. Biochem. Biotechnol.19(2),139–150 (1988).
  • Bhat KM, McCrae SI, Wood TM. The endo-(1–4)-β-D-glucanase system of Penicillium pinophilum cellulose: isolation, purification, and characterization of five major endoglucanase components. Carbohydr. Res.190(2),279–297 (1989).
  • Claeyssens M, van Tilbeurgh H, Tomme P, Wood TM, McCrae SI. Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Biochem. J.261(3),819–825 (1989).
  • Wood TM, McCrae SI, Bhat KM. The mechanism of fungal cellulase action. Synergism between components of Penicillium pinophilum cellulase in solubilizing hydrogen bond-ordered cellulose. Biochem. J.260(1),37–43 (1989).
  • Copa-Patiño J, Rodriguez J, Pérez-Leblic I. Purification and properties of a β-glucosidase from Penicillium oxalicum autolysates. FEMS Microbiol. Lett.67(1–2),191–196 (1990).
  • Kastelyanos OF, Ermolova OV, Sinitsyn AP et al. A scheme for purification of enzymes of the cellulase complex of Penicillium verruculosum and investigation of their biochemical properties and specificities. Biochemistry (Moscow)60(6),693–707 (1995).
  • Henrissat B, Davies GJ. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol.7(5),637–644 (1997).
  • Van den Berg MA, Albang R, Albermann K et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol.26(10),1161–1168 (2008).
  • Krogh KB, Harris PV, Olsen CL et al. Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl. Microbiol. Biotechnol.86(1),143–154 (2010).
  • Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y. Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as a cellulase supplementation. Enzyme Microb. Technol.46(6),444–449 (2010).
  • Jeya M, Joo AR, Lee KM et al. Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl. Microbiol. Biotechnol.86(5),1473–1484 (2010).
  • Jørgensen H, Eriksson T, Börjesson J, Tjerneld F, Olsson L. Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb. Technol.32(7),851–861 (2003).
  • Wei XM, Qin YQ, Qu YB. Molecular cloning and characterization of two major endoglucanases from Penicillium decumbens. J. Microbiol. Biotechnol.20(2),265–270 (2010).
  • Rubini MR, Dillon AJ, Kyaw CM, Faria FP, Pocas-Fonseca MJ, Silva-Pereira I. Cloning, characterization and heterologous expression of the first Penicillium echinulatum gene. J. Appl. Microbiol.108(4),1187–1198 (2010).
  • Mernitz G, Koch A, Henrissat B, Schulz G. Endoglucanase II (EGII) of Penicillium janthinellum: cDNA sequence, heterologous expression and promotor analysis. Curr. Genet.29(5),490–495 (1996).
  • Morozova VV, Gusakov AV, Andrianov RM, Pravilnikov AG, Osipov DO, Sinitsyn AP. Cellulases of Penicillium verruculosum. Biotechnol. J.5(8),871–880 (2010).
  • Joo AR, Jeya M, Lee KM et al. Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochem.45(6),851–858 (2010).
  • Alcocer MJ, Furniss CS, Kroon PA, Campbell M, Archer DB. Comparison of modular and non-modular xylanases as carrier proteins for the efficient secretions of heterologous proteins from Penicillium funiculosum. Appl. Microbiol. Biotechnol.60(6),726–732 (2003).
  • Koch A, Weigel CT, Schulz G. Cloning, sequencing and heterologous expression of a cellulase-encoding cDNA (cbh1) from Penicillium janthinellum. Gene124(1),57–65 (1993).
  • Bhiri F, Gargouri A, Ali MB et al. Molecular cloning, expression analysis and structural modeling of the cellobiohydrolase I from Penicillium occitanis. Enzyme Microb. Technol.46(2),74–81 (2010).
  • Liu G, Wei X, Qin Y, Qu Y. Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. J. Gen. Appl. Microbiol.56(3),223–229 (2010).
  • Chulkin AM, Loginov DS, Vavilova EA et al. Enzymological properties of endo-1,4-β-glucanase Eg12p of Penicillium canescens and characteristics of structural gene egl2. Biochemistry (Moscow)74(6),655–662 (2009).
  • Chulkin AM, Loginov DS, Vavilova EA et al. Cloning of the Penicillium canescens endo-1,4-β-glucanase gene egl3 and the characterization of the recombinant enzyme. Appl. Biochem. Microbiol.45(2),143–149 (2009).
  • Lee KM, Jeya M, Joo AR, Singh R, Kim IW, Lee JK. Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme Microb. Technol.46(3–4),206–211 (2010).
  • Houbraken J, Frisvad JC, Samson RA. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus2(1),87–95 (2011).
  • Quinlan RJ, Sweeney MD, Leggio LL et al. Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc. Natl Acad. Sci. USA108(37),15079–15084 (2011).
  • Westereng B, Ishida T, Vaaje-Kolstad G et al. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS ONE6(11),e27807 (2011).
  • Karkehabadi S, Hannson H, Kim S, Piens K, Mitchinson C, Sandgren M. The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J. Mol. Biol.383(1),144–154 (2008).
  • Harris PV, Welner D, McFarland KC et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry49(15),3305–3316 (2010).
  • Dereeper A, Audic S, Claverie JM, Blanc G. BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol.10,8 (2010).
  • Castellanos OF, Sinitsyn AP, Vlasenko EY. Evaluation of hydrolysis conditions of cellulosic materials by Penicillium cellulase. Biores. Technol.52(2),109–117 (1995).
  • Castellanos OF, Sinitsyn AP, Vlasenko EY. Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Biores. Technol.52(2),119–124 (1995).
  • Berlin A, Gilkes N, Kilburn D et al. Evaluation of cellulase preparations for hydrolysis of hardwood substrates. Appl. Biochem. Biotechnol.130(1–3),528–545 (2006).
  • Skomarovsky AA, Gusakov AV, Okunev ON et al. Studies of hydrolytic activity of enzyme preparations of Penicillium and Trichoderma fungi. Appl. Biochem. Microbiol.41(2),182–184 (2005).
  • Skomarovsky AA, Markov AV, Gusakov AV et al. New cellulases efficiently hydrolyzing lignocellulose pulp. Appl. Biochem. Microbiol.42(6),592–597 (2006).
  • Martins LF, Kolling D, Camassola M, Dillon AJP, Ramos LP. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Biores. Technol.99(5),1417–1424 (2008).
  • Singh R, Varma AJ, Laxman S, Rao M. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Biores. Technol.100(24),6679–6681 (2009).
  • Van Wyk JPH. Paper hydrolysis by cellulase from Penicillium funiculosum and Trichoderma viride. Biores. Technol.63(3),275–277 (1998).
  • Maeda RN, Serpa VI, Rocha VAL et al. Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochem.46(5),1196–1201 (2011).
  • Rosgaard L, Pedersen S, Cherry JR, Harris P, Meyer AS. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnol. Prog.22(2),493–498 (2006).
  • Ng IS, Li CW, Chan SP et al. High-level production of a thermoacidophilic β-glucosidase from Penicillium citrinum YS40–5 by solid-state fermentation with rice bran. Biores. Technol.101(4),1310–1317 (2010).
  • Ma L, Zhang J, Zou G, Wang C, Zhou Z. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens. Enzyme Microb. Technol.49(4),366–371 (2011).
  • Dillon AJP, Camassola M, Henriques JAP et al. Generation of recombinants strains to cellulases production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum. Enzyme Microb. Technol.43(6),403–409 (2008).
  • Voutilainen SP, Puranen T, Siika-aho M et al. Cloning, expression, and characterization of novel thermostable family 7 cellobiohydrolases. Biotechnol. Bioeng.101(3),515–528 (2008).
  • Limam F, Chaabouni E, Ghrir R, Marzouki N. Two cellobiohydrolases of Penicillium occitanis mutant Pol 6: purification and properties. Enzyme Microb. Technol.17(4),340–346 (1995).
  • Tuohy MG, Walsh DJ, Murray PG et al. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim. Biophys. Acta1596(2),366–380 (2002).
  • Gusakov AV, Sinitsyn AP, Salanovich TN et al. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense. Enzyme Microb. Technol.36(1),57–69 (2005).
  • Gao L, Wang F, Gao F, Wang L, Zhao J, Qu Y. Purification and characterization of a novel cellobiohydrolase (PdCel6A) from Penicillium decumbens JU-A10 for bioethanol production. Biores. Technol.102(17),8339–8342 (2011).
  • Berlin A, Gilkes N, Kurabi A et al. Weak lignin-binding enzymes. Appl. Biochem. Biotechnol.121(1–3),163–170 (2005).
  • Berlin A, Balakshin M, Gilkes N et al. Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations. J. Biotechnol.125(2),198–209 (2006).

▪ Patent

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.