2,488
Views
45
CrossRef citations to date
0
Altmetric
Review

Energy innovation potential of oleaginous microalgae

, , &
Pages 761-781 | Published online: 09 Apr 2014

References

  • Wijffels RH, Barbosa MJ. An outlook on microalgal biofuels. Science329(5993),796–799 (2010).
  • Bosak T, Liang B, Sim MS, Petroff AP. Morphological record of oxygenic photosynthesis in conical stromatolites. Proc. Natl Acad. Sci. USA106(27),10939–10943 (2009).
  • Kump LR. The rise of atmospheric oxygen. Nature451(7176),277–278 (2008).
  • Payne JL, Boyer AG, Brown JH et al. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proc. Natl Acad. Sci. USA106(1),24–27 (2009).
  • Stasiuk LD. Confocal laser scanning fluorescence microscopy of Botryococcus alginite from boghead oil shale, Boltysk, Ukraine: selective preservation of various micro-algal components. Org. Geochem.30,1021–1026 (1999).
  • Chisti Y. Biodiesel from microalgae. Biotech. Adv.25(3),294–306 (2007).
  • Chisti Y. Fuels from microalgae. Biofuels1(2),233–235 (2010).
  • Vijayaragh K, Karthik R, Kamala Nalini SP. Hydrogen generation from algae: a review. J. Plant. Sci.5(1),1–19 (2010).
  • Yen H-W, Brune DE. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol.98(1),130–134 (2007).
  • Sheehan J, Dunahay TG, Benemann JR, Roessler PG, Weissman JC. A Look Back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae. National Renewable Energy Laboratory, Golden, CO, USA (1998).
  • Haag AL. Algae bloom again. Nature447(31),520–521 (2007).
  • Wada H, Murata N. The essential role of phosphatidylglycerol in photosynthesis. Photosynth. Res.92(2),205–215 (2007).
  • Atadashi IM, Aroua MK, Abdul-Aziz A. High quality biodiesel and its diesel engine application. Renew Sustain Energ Rev.14(7),1999–2008 (2010).
  • Aatola H, Larmi M, Sarjovaara T, Mikkonen S. Hydrotreatedd vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx particulate emission and fuel consumption of a heavy duty engine. SAE Int. J. Engines1,1251–1262 (2008).
  • Fishman D, Majumdar R, Morello J, Pate R, Yang J. National Algal Biofuels Technology Roadmap. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program, Washington, DC, USA (2010).
  • Rezanka T, Zahradník J, Podojil M. Hydrocarbons in green and blue-green algae. Folia Microbiologica27(6),450–454 (1982).
  • Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol.66(5),486–496 (2005).
  • Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM. Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res. doi:10.1016/j.algal.05.003 (2012) (In press).
  • Niehaus TD, Okada S, Devarenne TP et al. Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc. Natl Acad. Sci. USA108(30),12260–12265 (2011).
  • Nagano S, Yamamoto S, Nagakubo M, Atsumi K, Watanabe MM. Physical properties of hydrocarbon oils produced by Botryococcus braunii with special reference to the density, kinematic viscosity, surface tension, and distillation properties. Procedia Environ. Sci.15,73–79 (2012).
  • Peyronel D, Artaud J, Iatrides MC, Rancurel P, Chevalier JL. Fatty acid and squalene compositions of Mediterranean Centrophorus SPP egg and liver oils in relation to age. Lipids19(9),643–648 (1984).
  • Chang M-H, Kim H-J, Jahng K-Y, Hong S-C. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl. Microbiol. Biotechnol.78(6),963–972 (2008).
  • Kimura T. Liu C. Li X. Maekawa T. Asaoka S. Conversion of isoprenoid oil by catalytic cracking and hydrocracking over nanoporous hybrid catalysts. J. Biomed. Biotechnol.637125 (2012).
  • Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C. Biochar production from freshwater algae by slow pyrolysis. J. Sci. Technol.6(2),186–195 (2012).
  • Demura M, Kawachi M, Koshikawa H, Nakayama T, Mayuzumi Y, Watanabe MM. Succession of genetic diversity of Botryococcus braunii (Trebouxiophyceae) in two Japanese reservoirs. Procedia Environ. Sci.1(5),3–11 (2012).
  • Watanabe MM, Tanabe Y. Biology and industrial potential of Botryococcus braunii. In: Handbook of Microalgal Culture (2nd Edition). Wiley-Blackwell, Oxford, UK (2012) (In press).
  • Ge Y, Lu J, Tian G. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour. Technol.102,130–134 (2011).
  • Tanoi T, Kawachi M, Watanabe MM. Effects of carbon source on growth and morphology of Botryococcus braunii. J. Appl. Phycol.23(1),25–33 (2011).
  • Ioki M, Baba M, Bidadi H et al. Modes of hydrocarbon oil biosynthesis revealed by comparative gene expression analysis for race A and race B strains of Botryococcus braunii. Bioresour. Technol.109,271–276 (2012).
  • Yokoyama R, Honda D. Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience48(4),199–211 (2007).
  • Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol. Res.102(4),439–448 (1998).
  • Raghu-Kumar S. Schizochytrium mangrovei sp. nov., a thraustochytrid from mangroves in India. Transact. British Mycol. Soc.90(4),627–631 (1988).
  • Rosa SM, Soria MA, Vélez CG, Galvagno MA. Improvement of a two-stage fermentation process for docosahexaenoic acid production by Aurantiochytrium limacinum SR21 applying statistical experimental designs and data analysis. Bioresour. Technol.101(7),2367–2374 (2010).
  • Liang Y, Sarkany N, Cui Y et al. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour. Technol.101(10),3623–3627 (2010).
  • Chen G, Fan KW, Lu FP et al. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. New Biotechnol.27(4),382–389 (2010).
  • Kaya K, Nakazawa A, Matsuura H et al. Thraustochytrid Aurantiochytrium sp. 18W-13a accumulates high amounts of squalene. Biosci. Biotechnol. Biochem.75(11),2246–2248 (2011).
  • Nakazawa A, Matsuura H, Kose R et al. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol.109,287–291 (2012).
  • Oswald WJ, Gotaas HB. Golueke CG, Kellen WR, Gloyna EF, Hermann ER. Algae in waste treatment. Sewage Ind. Wastes29,437–457 (1957).
  • Pittman JK. Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol.102,17–25 (2011).
  • Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol. Adv.30,673–690 (2012).
  • Canakci M. Sanli H. Biodiesel production from various feedstocks and their effects on the fuel properties. J. Ind. Microbiol. Biotechnol.35,431–441 (2008).
  • Xiong W, Li XF, Xiang JY, Wu QY. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol.78,29–36 (2008).
  • Clarens AF, Resurreccion EP, White MA, Colosi LM. Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol.44,1813–1819 (2010).
  • Yonezawa N, Matsuura H, Shiho M, Kaya K, Watanabe MM. Effects of soybean curd wastewater on the growth and hydrocarbon production of Botryococcus braunii strain BOT-22. Bioresour Technol.109,304–307 (2012).
  • Ioki M, Ohkoshi M, Nakahira-Yanaka Y, Nakajima N, Watanabe MM. Isolation of herbicide-resistant mutants of Botryococcus braunii. Bioresour. Technol.109,300–303 (2012).
  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresour. Technol.102,10861–10867 (2011).
  • Órpez R, Martínez ME, Hodaifa G, Yousfi FE, Jbari N, Sánchez S. Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination246,625–630 (2009).
  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R. Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour. Technol.102,6909–6919 (2011).
  • Sydney EB, da Silva TE, Tokarski A et al. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energy88,3291–3294 (2011).
  • Zhou W, Min M, Li Y et al. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour. Technol.110,448–455 (2012).
  • An J-Y, Sim S-J, Lee JS, Kim BW. Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J. Appl. Phycol.15,185–191 (2003).
  • Ji M-K, Kim H-C, Sapireddy VR et al. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl. Microbiol. Biothechnol. doi:10.1007/s00253–012–4097-x (2012) (Epub ahead of print).
  • Wang L, Li Y, Chen P et al. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol.101,2623–2628 (2010).
  • Wang H, Xiong H, Hui Z, Zeng X. Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresour. Technol.104,215–220 (2012).
  • Kushwaha JP. Srivastava VC. Mall ID. An overview of various technologies for the treatment of dairy wastewaters. Crit. Rev. Food Sci. Nutr.51,442–452 (2011).
  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol.101,3097–3105 (2010).
  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L. Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour. Technol.102,9884–9890 (2011).
  • Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K. Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J. Biosci. Bioeng.102,323–327 (2006).
  • Brennan L, Owende P. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energy Rev.14,557–577 (2010).
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng.101(2),87–96 (2006).
  • Schenk PM, Thomas-Hall SR, Stephens E et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res1,20–43 (2008).
  • Posten C. Design principles of photo-bioreactors for cultivation of microalgae. Eng. Life Sci.9,165–177 (2009).
  • Shimamura R, Watanabe S, Sakakura Y, Shiho M, Kaya K, Watanabe MM. Development of Botryococcus seed culture system for future mass culture. Procedia Environ. Sci.15,80–89 (2012).
  • Murthy GS. Overview and assessment of algal biofuels production technologies. In: Biofuels – Alternative Feedstocks and Conversion Processes. Academic Press, Waltham, MA, USA, 415–437 (2011).
  • Larden L, Hèlias A, Sialve B, Steyer JP, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol.43,6475–6481 (2009).
  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels24,4062–4077 (2010).
  • Campbell PK, Beer T, Batten D. Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour. Technol.102,50–56 (2011).
  • Sander K, Murthy GS. Life cycle analysis of algae biodiesel. Int. J. Life Cycle Assess.15,704–714 (2010).
  • Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ. Life-Cycle Analysis of Algal Lipid Fuels with the GREET Model. ANL/ESD/11–15. Energy System Division, Argonne National Laboratory, US Department of Energy, Lemont, IL, USA (2011).
  • Liu X, Clarens AF, Colosi LM. Algae biodiesel has potential despite inconclusive results to date. Bioresour. Technol.104,803–806 (2012).
  • Grierson S, Strezov V. Life cycle assessment of the microalgae biofuel value chain. Presented at: Binature 2012: The Third International Conference of Bioenvironment, Biodiversity and Renewable Energies. St Maarten, The Netherlands, 25–30 March 2012.
  • Benemann JR, Oswald WJ. Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. Final Report to the Department of Energy. Pittsburg Energy Technology Center, Pittsburg, PA, USA (1996).
  • Lundquist TJ, Woertz, IC, Quinn NWT, Benemann JR. A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, University of California, Berkeley, CA, USA (2010).
  • Norsker NH, Barbosa MJ, Vermue MH, Wijffels R. Microalgal production – close look at the economics. Biotechnol. Adv.29,24–27 (2011).
  • Norton TA, Michael Melkonian M, Andersen RA. Algal biodiversity. Phycologia35(4),308–326 (1996).
  • Shiho M, Kawachi M, Horioka K et al. Business evaluation of an oil production system with green micro-algae Botryococcus braunii. Procedia Environ. Sci.15,90–109 (2012).
  • Brealey RA, Myers ST, Allen F. Principles of Corporate Finance. McGraw-Hill International, NY, USA (2008).
  • Hiller D, Ross S, Westerfield R, Jaffe J, Jordan B. Corporate Finance. McGraw-Hill Education, Maidenhead, UK (2010).
  • International Energy Agency. World Energy Outlook 2006. International Energy Agency/OECD, Paris, France (2006).
  • International Energy Agency. World Energy Outlook 2007. International Energy Agency/OECD, Paris, France (2007).
  • International Energy Agency. World Energy Outlook 2008. International Energy Agency/OECD, Paris, France (2008).
  • International Energy Agency. World Energy Outlook 2009. International Energy Agency/OECD, Paris, France (2009).
  • International Energy Agency. World Energy Outlook 2010. International Energy Agency/OECD, Paris, France (2010).
  • Weyer K, Bush DR, Darzins A, Wilson BD. Theoretical maximum algal oil production. Bioenergy Res.3,204–213 (2010).
  • Eroglu E, Okada S, Melis A. Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification. J. Appl. Phycol.23,763–775 (2011).
  • Rodolfi L, Chini Zittelli G, Bassi N et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng.102,100–112 (2009).
  • Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol.36,269–274. (2009).
  • Chen Y, Wang J, Liu T, Gao L. Effects of initial population density (IPD) on growth and lipid composition of Nannochloropsis sp. J. Appl. Phycol. (2012) (Epub ahead of print).
  • Li Y, Horsman M, Wang B, Wu N, Lan CQ. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol.81,629–636 (2008).
  • Satoh A, Kato M, Yamato K et al. Characterization of the lipid accumulation in a new microalgal species, Pseudochoricystis ellipsoidea (Trebouxiophyceae). J. Jpn Inst. Energy89,909–913 (2010).
  • Tucci S, Vacula R, Krajcovic J, Proksch P, Martin W. Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J. Eukaryot. Microbiol.57,63–69 (2010).

▪ Patent

  • Kurano N, Sekiguchi H, Sato A, Matsuda S, Adachi K, Atsumi M: US7981648 B2 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.