241
Views
17
CrossRef citations to date
0
Altmetric
Review

Renewable fuels via catalytic hydrodeoxygenation of lipid-based feedstocks

&
Pages 219-239 | Published online: 09 Apr 2014

References

  • US Department of Energy. National Algal Biofuels Technology Roadmap. US Department of Energy, Washington, DC, USA (2010).
  • Naik SN, Goud VV, Rout PK, Dalai AK. Production of first and second generation biofuels: a comprehensive review. Renew. Sust. Energy Rev.14(2),578–597 (2010).
  • Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev.107(6),2411–2502 (2007).
  • Huber GW, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev.106(9),4044–4098 (2006).
  • Kamm B, Gruber PR, Kamm M. Biorefineries – industrial processes and products. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Hoboken, NJ, USA (2000).
  • Centi G, Santen RAV. Catalysis for Renewables: From Feedstock to Energy Production. Wiley-VCH, Hoboken, NJ, USA (2007).
  • Mittelbach M, Remschmidt C. Biodiesel – The Comprehensive Handbook. Martin Mittelbach, University of Michigan, MI, USA (2004).
  • Knothe G, Gerpen JV. The Biodiesel Handbook. Knothe G, Krahl J, Gerpen JV (Eds). AOCS Publishing, Champaign, IL, USA (2005).
  • ASTM International. D975. Standard Specification for Diesel Fuel Oils. ASTM International, West Conshohocken, PA, USA (2012).
  • British Standards Institution. BS EN 590. Automotive Fuels. Diesel. Requirements and Test Methods. British Standards Institution, London, UK (2010).
  • ASTM International. D6751. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International, West Conshohocken, PA, USA (2012).
  • British Standards Institution. BS EN 14214. Automotive Fuels. Fatty Acid Methyl Esters (FAME) for Diesel Engines. Requirements and Test Methods. British Standards Institution, London, UK (2009).
  • Knothe G. Biodiesel and renewable diesel: a comparison. Prog. Energ. Combust. Sci.36(3),364–373 (2010).
  • Kalnes TN, Marker T, Shonnard DR. Green diesel: a second generation biofuel. Int. J. Chem. Reactor Eng.5(1),1–9 (2007).
  • Kuronen M, Mikkonen S, Aakko P, Murtonen T. Hydrotreated vegetable oil as fuel for heavy duty diesel engines. Presented at: Powertrain and Fluid Systems Conference and Exhibition. Chicago, IL, USA, 29–31 October 2007.
  • Rantanen L, Linnaila R, Aakko P, Harju T. NExBTL – biodiesel fuel of the second generation. Presented at: Powertrain and Fluid Systems Conference and Exhibition. San Antonio, TX, USA, 24–27 October 2005.
  • Marinangeli R, Marker T, Petri J et al.. Opportunities for Biorenewables in Oil Refineries. US Department of Energy, Washington, DC, USA (2005).
  • Choudhary TV, Phillips CB. Renewable fuels via catalytic hydrodeoxygenation. Appl. Catal. A Gen.397(1–2),1–12 (2011).
  • Leliveld RG, Eijsbouts SE. How a 70-year-old catalytic refinery process is still ever dependent on innovation. Catal. Today130(1),183–189 (2008).
  • Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y. Developments in direct thermochemical liquefaction of biomass: 1983–1990. Energy Fuels5(3),399–410 (1991).
  • Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renew. Sust. Energ. Rev.4(1),1–73 (2000).
  • Thigpen PL, Berry WL. Energy from Biomass and Wastes VI. Klass DL (Ed.). Institute of Gas Technology, Chicago, IL, USA, 1057 (1982).
  • Furimsky E. Catalytic hydrodeoxygenation. Appl. Catal. A Gen.199(2),147–190 (2000).
  • Elliott DC. Historical developments in hydroprocessing bio-oils. Energy Fuels21(3),1792–1815 (2007).
  • Bu Q, Lei H, Zacher AH et al. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresour. Technol.124,470–477 (2012).
  • Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification – a review. Renew. Sust. Energ. Rev.10(3),248–268 (2006).
  • Holmgren J, Gosling C, Marinangeli R, Marker T, Faraci G, Perego C. New developments in renewable fuels offer more choices: vegetable oil-based diesel can offer better integration within crude-oil refineries for fuels blending. Hydrocarb. Process.86(9),67–72 (2007).
  • Senol OI, Ryymin E-M, Viljava T-R, Krause AOI. Effect of hydrogen sulphide on the hydrodeoxygenation of aromatic an aliphatic oxygenates on sulphided catalysts. J. Mol. Catal. A Chem.277(1–2),107–112 (2007).
  • Şenol OÌ, Ryymin EM, Viljava TR, Krause AOI. Reactions of methyl heptanoate hydrodeoxygenation on sulphided catalysts. J. Mol. Catal. A Chem.268(1–2),1–8 (2007).
  • Şenol OÌ, Viljava TR, Krause AOI. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts. Appl. Catal. A Gen.326(2),236–244 (2007).
  • Şenol OÌ, Viljava TR, Krause AOI. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal. Today100(3–4),331–335 (2005).
  • Şenol OÌ, Viljava TR, Krause AOI. Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: the effect of water. Catal. Today106(1–4),186–189 (2005).
  • Viljava TR, Komulainen RS, Krause AOI. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catal. Today60(1–2),83–92 (2000).
  • Viljava TR, Saari ERM, Krause AOI. Simultaneous hydrodesulfurization and hydrodeoxygenation: interactions between mercapto and methoxy groups present in the same or in separate molecules. Appl. Catal. A Gen.209(1–2),33–43 (2001).
  • Robert D. Perlack, Lynn L et al.Biomass as a Feedstock for a Bioenergy and Bioproducts Industry: the Technical Feasibility of a Billion-Ton Annual Supply. US Department of Energy and US Department of Agriculture, Washington, DC, USA, 78 (2005).
  • DemirbaŞ A. Oily products from mosses and algae via pyrolysis. Energ. Source. Part A28(10),933–940 (2006).
  • Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ. Sci.1,32–65 (2008).
  • Knothe G. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci.2,759–766 (2009).
  • Pinzi S, Garcia IL, Lopez-Gimenez FJ, Castro MDLD, Dorado G, Dorado MP. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels23(5),2325–2341 (2009).
  • Clothier PQE, Aguda BD, Moise A, Pritchard HO. How do diesel-fuel ignition improvers work? Chem. Soc. Rev.22(2),101–108 (1993).
  • Barbour R, Rickeard D, Elliott N. Understanding diesel lubricity. Presented at: CEC/SAE Spring Fuels and Lubricants Meeting and Exposition. Paris, France, 19 June 2000.
  • Aatola H, Larmi M, Sarjovaara T, Mikkonen S. Hydrotreated vegetable oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE Int. J. Engines1(1),1251–1262 (2009).
  • Murtonen T, Aakko-Saksa P, Kuronen M, Mikkonen S, Lehtoranta K. Emissions with heavy-duty diesel engines and vehicles using FAME, HVO and GTL fuels with and without DOC + POC aftertreatment. SAE Int. J. Fuels Lubr.2(2),147–166 (2010).
  • Oja S. NExBTL – next generation renewable diesel. Presented at: New Biofuels. Berlin, Germany, 6–7 May 2008.
  • ASTM International. D1655. Standard Specification for Aviation Turbine Fuels. ASTM International, West Conshohocken, PA, USA (2012).
  • ASTM International. D7566. Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons. ASTM International, West Conshohocken, PA, USA (2012).
  • Stumborg M, Wong A, Hogan E. Hydroprocessed vegetable oils for diesel fuel improvement. Bioresour. Technol.56(1),13–18 (1996).
  • Sebos I, Matsoukas A, Apostolopoulos V, Papayannakos N. Catalytic hydroprocessing of cottonseed oil in petroleum diesel mixtures for production of renewable diesel. Fuel88(1),145–149 (2009).
  • Stella B, Spyros V, Aggeliki K. Catalytic hydrocracking of fresh and used cooking oil. Ind. Eng. Chem. Res.48(18),8402–8406 (2009).
  • Veldsink JW, Bouma MJ, Schöön NH, Beenackers ACM. Heterogeneous hydrogenation of vegetable oils: a literature review. Catal. Rev.39(3),253–318 (1997).
  • Singh D, Rezac ME, Pfromm PH. Partial hydrogenation of soybean oil using metal-decorated integral-asymmetric polymer membranes: effects of morphology and membrane properties. J. Memb. Sci.348(1–2),99–108 (2010).
  • Benedict JH, Daubert BF. The partial hydrogenation of triolein. J. Am. Chem. Soc.72(10),4356–4359 (1950).
  • Vonghia E, Boocock DGB, Konar SK, Leung A. Pathways for the deoxygenation of triglycerides to aliphatic hydrocarbons over activated alumina. Energy Fuels9(6),1090–1096 (1995).
  • Leung A, Boocock DGB, Konar SK. Pathways for the deoxygenation of triglycerides to aliphatic hydrocarbons over activated alumina. Energy Fuels9(5),913–920 (1995).
  • Snåre M, Kubičková I, Mäki-Arvela P, Chichova D, Eränen K, Murzin DY. Catalytic deoxygenation of unsaturated renewable feedstocks for production of diesel fuel hydrocarbons. Fuel87(6),933–945 (2008).
  • Krar M, Kovács S, Kalló D, Hancsók J. Fuel purpose hydrotreating of sunflower oil on CoMo/Al2O3. Bioresour. Technol.101(23),9287–9293 (2010).
  • Huber GW, O’Connor P, Corma A. Processing biomass in conventional oil refineries: production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Appl. Catal. A Gen.329(0),120–129 (2007).
  • Kubicka D, Kaluza L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl. Catal. A Gen.372(2),199–208 (2010).
  • Yakovlev VA, Khromova SA, Sherstyuk OV et al. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal. Today144(3–4),362–366 (2009).
  • Filho GNDR, Brodzki D, Djega-Mariadassou G. Formation of alkanes, alkylcycloalkanes and alkylbenzenes during the catalytic hydrocracking of vegetable oils. Fuel72(4),543–549 (1993).
  • Simacek P, Kubicka D, Sebor G, Pospisil M. Fuel properties of hydroprocessed rapeseed oil. Fuel89(3),611–615 (2010).
  • Simacek S, Kubicka D, Sebor G, Pospisil M. Hydroprocessed rapeseed oil as a source of hydrocarbon-based biodiesel. Fuel88(3),456–460 (2009).
  • Kubicka D, Simacek S, Zilkova N. Transformation of vegetable oils into hydrocarbons over mesoporous-alumina-supported CoMo catalysts. Top. Catal.52(1–2),161–168 (2009).
  • Gusmao J, Brodzki D, Djega-Mariadassou G, Frety R. Utilization of vegetable oils as an alternative source for diesel-type fuel: hydrocracking on reduced Ni/SiO2 and sulfided Ni–Mo/γ-Al2O3. Catal. Today5,533–544 (1989).
  • Guzman A, Torres JE, Prada LP, Nunez ML. Hydroprocessing of crude palm oil at pilot plant scale. Catal. Today156(1–2),38–43 (2010).
  • Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts: I. Catalytic reaction schemes. Appl. Catal. A Gen.109(1),77–96 (1994).
  • Laurent E, Delmon B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts: II. Influence of water, ammonia, and hydrogen sulfide. Appl. Catal. A Gen.109,97–115 (1994).
  • Centeno A, Laurent E, Delmon B. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxylic and guaiacol-type molecules. Appl. Catal. A Gen.154,288–298 (1995).
  • Bezergianni S, Kalogianni A, Vasalos IA. Hydrocracking of vacuum gas oil–vegetable oil mixtures for biofuels production. Bioresour. Technol.100,3036–3042 (2009).
  • Maier WF, Roth W, Thies I, Schleyer PVR. Hydrogenolysis, IV. Gas phase decarboxylation of carboxylic acids. Chemische Berichte115(2),808–812 (1982).
  • Ferrari M, Bosmans S, Maggi R, Delmon B, Grange P. CoMo/carbon hydrodeoxygenation catalysts: influence of the hydrogen sulfide partial pressure and of the sulfidation temperature. Catal. Today65(2–4),257–264 (2001).
  • Ferrari M, Maggi R, Delmon B, Grange P. Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygenation activity of a CoMo/carbon catalyst. J. Catal.198(1),47–55 (2001).
  • Nunes PP, Brodzki D, Bugli G, Djéga-Mariadassou G. Hydrocracking of soybean oil under pressure: research procedure and general aspects of the reaction. Rev. Inst. Fr. Pet.41(3),421–431 (1986).
  • Kubickova I, Snare M, Eranen K, Maki-Arvela P, Murzin DY. Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal. Today106(1–4),197–200 (2005).
  • Mäki-Arvela P, Kubickova I, Snåre M, Eränen K, Murzin DY. Catalytic deoxygenation of fatty acids and their derivatives. Energy Fuels21(1),30–41 (2006).
  • Jena U, Das KC. Production of biocrude oil from microalgae via thermochemical liquefaction process. Presented at: Bioenergy Engineering. Bellevue, WA, USA, 11–14 October 2009.
  • Duan P, Savage PE. Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind. Eng. Chem. Res.50(1),52–61 (2011).
  • Snåre M, Kubičková I, Mäki-Arvela P, Eränen K, Murzin DY. Heterogeneous catalytic deoxygenation of stearic acid for production of biodiesel. Ind. Eng. Chem. Res.45(16),5708–5715 (2006).
  • Fisk CA, Morgan T, Ji Y, Crocker M, Crofcheck C, Lewis SA. Bio-oil upgrading over platinum catalysts using in situ generated hydrogen. 358(2),150–156 (2009).
  • Murata K, Liu Y, Inaba M, Takahara I. Production of synthetic diesel by hydrotreatment of jatropha oils using Pt−Re/H-ZSM-5 catalyst. Energy Fuels24(4),2404–2409 (2010).
  • Immer JG, Kelly MJ, Lamb HH. Catalytic reaction pathways in liquid-phase deoxygenation of C18 free fatty acids. Appl. Catal. A Gen.375(1),134–139 (2010).
  • Maher KD, Kirkwood KM, Gray MR, Bressler DC. Pyrolytic decarboxylation and cracking of stearic acid. Ind. Eng. Chem. Res.47(15),5328–5336 (2008).
  • Kubicka D, Bejblova M, Vik J. Conversion of vegetable oils into hydrocarbons over CoMo/MCM-41 catalysts. Top. Catal.53(3–4),168–178 (2010).
  • Nava R, Pawelec B, Castaño P, Álvarez-Galván MC, Loricera CV, Fierro JLG. Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl. Catal. B Environ.92(1–2),154–167 (2009).
  • Sheehan J, Dunahay T, Benemann J, Roessler P. A Look Back at the US Department of Energy’s Aquatic Species Program – Biodiesel from Algae. US Department of Energy, Washington, DC, USA (1998).
  • Chisti Y. Fuels from microalgae. Biofuels1(2),233–235 (2010).
  • Weissman JC, Tillett DM, Goebel RP. Design and Operation of Outdoor Microalgae Test Facility. Solar Energy Research Institute, Golden, CO, USA, 32–57 (1989).
  • Schenk PM, Thomas-Hall SR, Stephens E et al. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg. Res.1,20–43 (2008).
  • Chisti Y. Biodiesel from microalgae beats bioethanol. Trends Biotechnol.26(3),126–131 (2008).
  • Cantrell KB, Ducey T, Ro KS, Hunt PG. Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol.99(17),7941–7953 (2008).
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng.101(2),87–96 (2006).
  • Widjaja A, Chien C-C, Ju Y-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng.40(1),13–20 (2009).
  • Dunstan G, Volkman J, Barrett S, Garland C. Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol.5(1),71–83 (1993).
  • De Angelis L, Risé P, Giavarini F, Galli C, Bolis CL, Colombo ML. Marine macroalgae analyzed by mass spectrometry are rich sources of polyunsaturated fatty acids. J. Mass Spectrom.40(12),1605–1608 (2005).
  • Herrero M, Cifuentes A, Ibañez E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem.98(1),136–148 (2006).
  • Sajilata MG, Singhal RS, Kamat MY. Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J. Food Eng.84(2),321–326 (2008).
  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture151(1–4),315–331 (1997).
  • Ramadan MF, Asker MHS, Ibrahim ZK. Functional bioactive compounds and biological activities of Spirulina platensis lipids. Czech J. Food Sci.26,211–222 (2008).
  • Becker EW. Microalgae: Biotechnology and Microbiology (1st Edition). Cambridge University Press, Cambridge, UK (1994).
  • Medina AR, Grima EM, Gimenez AG, Ibanez MJ. Downstream processing of algal polyunsaturated fatty acids. Biotechnol. Adv.16(3),517–580 (1998).
  • Halim R, Harun R, Webley PA, Danquah MK. Bioprocess engineering aspects of biodiesel and bioethanol production from microalgae. In: Advanced Biofuels and Bioproducts. Lee JW (Ed.). Springer, New York, USA, 601–628 (2012).
  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol.128(3),219–240 (1989).
  • Chisti Y. Biodiesel from microalgae. Biotechnol. Adv25(3),294–306 (2007).
  • Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB. Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol.80(1),53–62 (2001).
  • Cortright RD, Davda RR, Dumesic JA. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature418(6901),964–967 (2002).
  • Davda RR, Dumesic JA. Renewable hydrogen by aqueous-phase reforming of glucose. Chem. Commun.1,36–37 (2004).
  • Davda RR, Dumesic JA. Catalytic reforming of oxygenated hydrocarbons for hydrogen with low levels of carbon monoxide. Angew. Chem. Int. Ed. Engl.42(34),4068–4071 (2003).
  • Bernas H, Eränen K, Simakova I et al. Deoxygenation of dodecanoic acid under inert atmosphere. Fuel89(8),2033–2039 (2010).
  • Wang W-C, Thapaliya N, Campos A, Stikeleather LF, Roberts WL. Hydrocarbon fuels from vegetable oils via hydrolysis and thermo-catalytic decarboxylation. Fuel95,622–629 (2012).
  • Immer J. Kinetics of Catalytic Deoxygenation of Stearic Acid over Pd/C. PhD Thesis, North Carolina State University, NC, USA, chapter 3 (2010).
  • Kalinichev AG, Churakov SV. Size and topology of molecular clusters in supercritical water: a molecular dynamics simulation. Chem. Phys. Letters302,411–417 (1999).
  • Marcus Y. On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding. Fluid Phase Equilibr.164,131–142 (1999).
  • Antal MJ, Brittain A, Dealmeida C, Ramayya S, Roy JC. Heterolysis and homolysis in supercritical water. In: Supercritical Fluids. American Chemical Society, Washington, DC, USA (1987).
  • Zhao C, He J, Lemonidou AA, Li X, Lercher JA. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J. Catal.280(1),8–16 (2011).
  • Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA. Highly selective catalytic conversion of phenolic bio-oil to alkanes. Angew. Chem. Int. Ed. Engl.48(22),3987–3990 (2009).
  • Barneby HL, Brown AC. Continuous fat splitting plants using the colgateemery process. J. Am. Oil Chem. Soc.25(3),95–99 (1948).
  • King JW, Holliday RL, List GR. Hydrolysis of soybean oil in a subcritical water flow reactor. Green Chem.1(6),261–264 (1999).
  • Watanabe M, Iida T, Inomata H. Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Convers. Manag.47(18–19),3344–3350 (2006).
  • Maiella P, Brill T. Spectroscopy of hydrothermal reactions. 10. Evidence of wall effects in decarboxylation kinetics of 1.00 m HCO2X (X ¼ H, Na) at 280–330°C and 275 bar. J. Phys. Chem. A102(29),5886–5891 (1998).
  • Yu J, Savage PE. Decomposition of formic acid under hydrothermal conditions. Ind. Eng. Chem. Res.37(1),2–10 (1998).
  • Bell JLS, Palmer DA, Barnes HL, Drummond SE. Thermal decomposition of acetate: III. Catalysis by mineral surfaces. Geochim. Cosmochim. Acta58(19),4155–4177 (1994).
  • Meyer JC, Marrone PA, Tester JW. Acetic acid oxidation and hydrolysis in supercritical water. AIChE J.41(9),2108–2121 (1995).
  • Donnis B, Egeberg R, Blom P, Knudsen K. Hydroprocessing of bio-oils and oxygenates to hydrocarbons. Understanding the reaction routes. Top. Catal.52(3),229–240 (2009).
  • Crossley S, Faria J, Shen M, Resasco DE. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science327(5961),68–72 (2010).
  • Laurent E, Delmon B. Influence of water in the deactivation of a sulfided NiMoγ-Al2O3 catalyst during hydrodeoxygenation. J. Catal.146(1),281–291 (1994).
  • Kalnes TN, Marker T, Shonnard DR, Koers KP. Green diesel production by hydrorefining renewable feedstocks. Biofuels Technol.4,7–11 (2008).
  • Leckel D, Liwanga-Ehumbu M. Diesel-selective hydrockracking of an iron-based Fischer–Tropsch wax fraction C15–C45 using a MoO3-modified noble metal catalyst. Energy Fuels20(6),2330–2336 (2006).
  • Lamprecht D. Fischer–Tropsch fuel for use by the US Military as battlefield-use fuel of the future. Energy Fuels21(3),1448–1453 (2007).
  • British Standards Institution. BS EN 14112. Fat and Oil Derivatives – Fatty Acid Methyl Esters (FAME) – Determination of Oxidation Stability (Accelerated Oxidation Test). British Standards Institution, London, UK (2003).
  • Rozmysłowicz B, Mäki-Arvela P, Tokarev A, Leino A-R, Eränen K, Murzin DY. Influence of hydrogen in catalytic deoxygenation of fatty acids and their derivatives over Pd/C. Ind. Eng. Chem. Res.51(26),8922–8927 (2012).
  • Minowa T, Sawayama S. A novel microalgal system for energy production with nitrogen cycling. Fuel78(10),1213–1215 (1999).
  • Guo J, Ruan R, Zhang Y. Hydrotreating of phenolic compounds separated from bio-oil to alcohols. Ind. Eng. Chem. Res.51(19),6599–6604 (2012).
  • Davis JL, Barteau MA. Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111). Surf. Sci.235(2–3),235–248 (1990).
  • Khuwijitjaru P, Adachi S, Matsuno R. Solubility of saturated fatty acids in water at elevated temperatures. Biosci. Biotechnol. Biochem.66(8),1723–1726 (2002).
  • Mills V, McClain H. Fat hydrolysis. Ind. Eng. Chem.41,1982–1985 (1949).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.