266
Views
8
CrossRef citations to date
0
Altmetric
Review

Nature’s bioreactor: the rumen as a model for biofuel production

&
Pages 511-521 | Published online: 09 Apr 2014

References

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev.66(3),506–577 (2002).
  • Weimer PJ. Why don’t ruminal bacteria digest cellulose faster? J. Dairy Sci.79(8),1496–1502 (1996).
  • Weimer PJ. End product yields from the extraruminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks. Bioresour. Technol.102(3),3254–3259 (2011).
  • Lynd LR, Van Zyl WH, Mcbride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol.16(5),577–583 (2005).
  • Weimer PJ, Russell JB, Muck RE. Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. Bioresour. Technol.100(21),5323–5331 (2009).
  • Mackie RI. Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integr. Comp. Biol.42(2),319–326 (2002).
  • Patra AK, Saxena J. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie Van Leeuwenhoek96(4),363–375 (2009).
  • Fouts DE, Szpakowski S, Purushe J et al. Next generation sequencing to define prokaryotic and fungal diversity in the bovine rumen. PLoS ONE7(11),e48289 (2012).
  • Sauer M, Marx H, Mattanovich D. From rumen to industry. Microb. Cell Fact.11,121 (2012).
  • Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PLoS ONE7(3),e33306 (2012).
  • Bryant MP, Robinson IM. Some nutritional characteristics of predominant culturable ruminal bacteria. J. Bacteriol.84,605–614 (1962).
  • Bryant MP, Burkey LA. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci.36,205–217 (1953).
  • Varel VH, Dehority BA. Ruminal cellulolytic bacteria and protozoa from bison, cattle–bison hybrids, and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol.55(1),148–153 (1989).
  • Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol.75(1),165–174 (2007).
  • Kim M, Morrison M, Yu Z. Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments. Folia Microbiol. (Praha)56(5),453–458 (2011).
  • Hess M, Sczyrba A, Egan R et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science331(6016),463–467 (2011).
  • Hungate RE. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev.14(1),1–49 (1950).
  • Dehority BA, Tirabasso PA. Antibiosis between ruminal bacteria and ruminal fungi. Appl. Environ. Microbiol.66(7),2921–2927 (2000).
  • Wood TM, Wilson CA, Mccrae SI, Joblin KN. A highly-active extracellular cellulase from the anaerobic rumen fungus Neocallimastix-frontalis.FEMS Microbiol. Lett.34(1),37–40 (1986).
  • Youssef NH, Couger M, Struchtemeyer CG et al. The genome of the anaerobic fungus Orpinomyces sp. C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol.79(15),4620–4634 (2013).
  • Ransom-Jones E, Jones DL, Mccarthy AJ, Mcdonald JE. The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb. Ecol.63(2),267–281 (2012).
  • Weimer PJ. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture. Arch. Microbiol.160(4),288–294 (1993).
  • Suen G, Weimer PJ, Stevenson DM et al. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS ONE6(4),e18814 (2011).
  • Jun HS, Qi M, Gong J, Egbosimba EE, Forsberg CW. Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion. J. Bacteriol.189(19),6806–6815 (2007).
  • Pavlostathis SG, Miller TL, Wolin MJ. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus.Appl. Environ. Microbiol.54(11),2655–2659 (1988).
  • Weimer PJ, Price NP, Kroukamp O, Joubert LM, Wolfaardt GM, Van Zyl WH. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7. Appl. Environ. Microbiol.72(12),7559–7566 (2006).
  • Miron J, Jacobovitch J, Bayer EA, Lamed R, Morrison M, Ben-Ghedalia D. Subcellular distribution of glycanases and related components in Ruminococcus albus SY3 and their role in cell adhesion to cellulose. J. Appl. Microbiol.91(4),677–685 (2001).
  • Ohara H, Karita S, Kimura T, Sakka K, Ohmiya K. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus.Biosci. Biotechnol. Biochem.64(2),254–260 (2000).
  • Suen G, Stevenson DM, Bruce DC et al. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J. Bacteriol.193(19),5574–5575 (2011).
  • Moon YH, Iakiviak M, Bauer S, Mackie RI, Cann IK. Biochemical analyses of multiple endoxylanases from the rumen bacterium Ruminococcus albus 8 and their synergistic activities with accessory hemicellulose-degrading enzymes. Appl. Environ. Microbiol.77(15),5157–5169 (2011).
  • Morrison M, Miron J. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol. Lett.185(2),109–115 (2000).
  • Berg Miller ME, Antonopoulos DA, Rincon MT et al. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1. PLoS ONE4(8),e6650 (2009).
  • Rincon MT, Dassa B, Flint HJ et al. Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS ONE5(8),e12476 (2010).
  • Purushe J, Fouts DE, Morrison M et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb. Ecol.60(4),721–729 (2010).
  • Kelly WJ, Leahy SC, Altermann E et al. The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316(T) highlights adaptation to a polysaccharide-rich environment. PLoS ONE5(8),e11942 (2010).
  • Iakiviak M, Mackie RI, Cann IK. Functional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8. Appl. Environ. Microbiol.77(21),7541–7550 (2011).
  • Flint HJ, Martin J, Mcpherson CA, Daniel AS, Zhang JX. A bifunctional enzyme, with separate xylanase and beta(1,3–1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens.J. Bacteriol.175(10),2943–2951 (1993).
  • Nakamura M, Nagamine T, Harada C, Tajima K, Matsui H, Benno Y. Expression of Ruminococcus albus xylanase gene (xynA) in Streptococcus bovis 12-U-1. Curr. Microbiol.47(1),71–74 (2003).
  • Ljungdahl LG. The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. NY Acad. Sci.1125,308–321 (2008).
  • Liu JR, Duan CH, Zhao X, Tzen JT, Cheng KJ, Pai CK. Cloning of a rumen fungal xylanase gene and purification of the recombinant enzyme via artificial oil bodies. Appl. Microbiol. Biotechnol.79(2),225–233 (2008).
  • Yang B, Dai Z, Ding S, Wyman CE. Enzymatic hydrolysis of cellulosic biomass. Biofuels2,421–450 (2011).
  • Himmel M, Xu Q, Luo Y, Ding S, Lamed R, Bayer EA. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels1,323–341 (2010).
  • Osborne JM, Dehority BA. Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria. Appl. Environ. Microbiol.55(9),2247–2250 (1989).
  • Fukuma N, Koike S, Kobayashi Y. Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture with Fibrobacter succinogenes S85. FEMS Microbiol. Lett.336(1),17–25 (2012).
  • Fondevila M, Dehority BA. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J. Anim. Sci.74(3),678–684 (1996).
  • Russell JB, Mantovani HC. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J. Mol. Microbiol. Biotechnol.4(4),347–355 (2002).
  • Kisidayova S, Laukova A, Jalc D. Comparison of nisin and monensin effects on ciliate and selected bacterial populations in artificial rumen. Folia Microbiol. (Praha)54(6),527–532 (2009).
  • Callaway TR, Carneiro De Melo AM, Russell JB. The effect of nisin and monensin on ruminal fermentations in vitro. Curr. Microbiol.35(2),90–96 (1997).
  • Chen J, Stevenson DM, Weimer PJ. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens.Appl. Environ. Microbiol.70(5),3167–3170 (2004).
  • Steinkraus KH. Industrialization of Indigenous Fermented Foods (Second Edition). Marcel Dekker, NY, USA (2004).
  • Warnecke F, Luginbuhl P, Ivanova N et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature450(7169),560–565 (2007).
  • Breznak J, Brune A. Role of microorganisms in the digestion of lignocelluloses by termintes. Annu. Rev. Microbiol.39,453–487 (1994).
  • Tartar A, Wheeler MM, Zhou X, Coy MR, Boucias DG, Scharf ME. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes.Biotechnol. Biofuels2,25 (2009).
  • Luyten YA, Thompson JR, Morrill W, Polz MF, Distel DL. Extensive variation in intracellular symbiont community composition among members of a single population of the wood-boring bivalve Lyrodus pedicellatus (Bivalvia: Teredinidae). Appl. Environ. Microbiol.72(1),412–417 (2006).
  • Yang JC, Madupu R, Durkin AS et al. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS ONE4(7),e6085 (2009).
  • Imam SH, Greene RV, Griffin HL. Binding of extracellular carboxymethylcellulase activity from the marine shipworm bacterium to insoluble cellulosic substrates. Appl. Environ. Microbiol.59(5),1259–1263 (1993).
  • Greene RV, Griffin HL, Freer SN. Purification and characterization of an extracellular endoglucanase from the marine shipworm bacterium. Arch. Biochem. Biophys.267(1),334–341 (1988).
  • Ekborg NA, Morrill W, Burgoyne AM, Li L, Distel DL. CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902T, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicellatus.Appl. Environ. Microbiol.73(23),7785–7788 (2007).
  • Ni J, Takehara M, Watanabe H. Heterologous overexpression of a mutant termite cellulase gene in Escherichia coli by DNA shuffling of four orthologous parental cDNAs. Biosci. Biotechnol. Biochem.69(9),1711–1720 (2005).
  • Nimchua T, Thongaram T, Uengwetwanit T, Pongpattanakitshote S, Eurwilaichitr L. Metagenomic analysis of novel lignocellulose-degrading enzymes from higher termite guts inhabiting microbes. J. Microbiol. Biotechnol.22(4),462–469 (2012).
  • Brulc JM, Antonopoulos DA, Miller ME et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl Acad. Sci. USA106(6),1948–1953 (2009).
  • Mckinlay JB, Laivenieks M, Schindler BD et al. A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production. BMC Genomics11,680 (2010).
  • Spring S, Lapidus A, Schroder M et al. Complete genome sequence of Desulfotomaculum acetoxidans type strain (5575). Stand. Genomic Sci.1(3),242–253 (2009).
  • Roh H, Ko HJ, Kim D et al. Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. J. Bacteriol.193(1),307–308 (2011).
  • Forde BM, Neville BA, O’Donnell MM et al. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts. Microb. Cell Fact.10(Suppl. 1),S13 (2011).
  • Hong SH, Kim JS, Lee SY et al. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens.Nat. Biotechnol.22(10),1275–1281 (2004).
  • Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D, Sauer M. Genome sequence of the ruminal bacterium Megasphaera elsdenii.J. Bacteriol.193(19),5578–5579 (2011).
  • Lee GH, Kumar S, Lee JH et al. Genome sequence of Oscillibacter ruminantium strain GH1, isolated from rumen of Korean native cattle. J. Bacteriol.194(22),6362 (2012).
  • Berg Miller ME, Yeoman CJ, Chia N et al. Phage–bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ. Microbiol.14(1),207–227 (2012).
  • Pukall R, Lapidus A, Nolan M et al. Complete genome sequence of Slackia heliotrinireducens type strain (RHS 1). Stand. Genomic Sci.1(3),234–241 (2009).
  • Rusniok C, Couve E, Da Cunha V et al. Genome sequence of Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J. Bacteriol.192(8),2266–2276 (2010).
  • Rosewarne CP, Cheung JL, Smith WJ et al. Draft genome sequence of Treponema sp. strain JC4, a novel spirochete isolated from the bovine rumen. J. Bacteriol.194(15),4130 (2012).
  • Baar C, Eppinger M, Raddatz G et al. Complete genome sequence and analysis of Wolinella succinogenes.Proc. Natl Acad. Sci. USA100(20),11690–11695 (2003).
  • Leahy SC, Kelly WJ, Altermann E et al. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS ONE5(1),e8926 (2010).
  • Lee JH, Rhee MS, Kumar S et al. Genome sequence of Methanobrevibacter sp. strain jh1, isolated from rumen of Korean native cattle. Genome Announc.1(1), pii: e00002-13 (2013).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.