179
Views
32
CrossRef citations to date
0
Altmetric
Review

Improving lignocellulolytic enzyme production with Penicillium: from strain screening to systems biology

, , &
Pages 523-534 | Published online: 09 Apr 2014

References

  • Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotech.108,95–120 (2007).
  • Liu G, Qin Y, Li Z, Qu Y. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol. Adv. doi:10.1016/j.biotechadv.2013.03.001 (2013) (Epub ahead of print).
  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol. Bioeng.109(4),1083–1087 (2011).
  • Seidl V, Seiboth B. Trichoderma reesei: genetic approaches to improving strain efficiency.Biofuels1(2),343–354 (2010).
  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels2,19 (2009).
  • Gusakov AV, Sinitsyn AP. Cellulases from Penicillium species for producing fuels from biomass. Biofuels3(4),463–477 (2012).
  • Marjamaa K, Toth K, Bromann PA, Szakacs G, Kruus K. Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microb. Tech.52(6–7),358–369 (2013).
  • Chekushina A, Dotsenko G, Sinitsyn A. Comparing the efficiency of plant material bioconversion processes using biocatalysts based on Trichoderma and Penicillium verruculosum enzyme preparations. Catal. Ind.5(1),98–104 (2013).
  • Sahare P, Singh R, Laxman RS, Rao M. Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Appl. Biochem. Biotech.168(7),1806–1819 (2012).
  • Guais O, Borderies G, Pichereaux C et al. Proteomics analysis of ‘Rovabiot Excel’, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J. Ind. Microbiol. Biotech.35(12),1659–1668 (2008).
  • Larkin MA, Blackshields G, Brown NP et al. Clustal W and Clustal X version 2.0. Bioinformatics23(21),2947–2948 (2007).
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28(10),2731–2739 (2011).
  • Qu Y, Gao P, Wang Z. Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta. Mycol. Sin.3,238–243 (1984).
  • Qu Y, Zhao X, Gao P, Wang Z. Cellulase production from spent sulfite liquor and paper-mill waste fiber. Appl. Biochem. Biotech.28–29,363–368 (1991).
  • Zhao X, Qu Y, Gao P. The discussion on the selection of a cellulase-production strain in black liquor. J. Cellulose Sci. Technol.1(2),28–32 (1993).
  • Cheng Y, Song X, Qin Y, Qu Y. Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J. Appl. Microbiol.107(6),1837–1846 (2009).
  • Liu K, Lin X, Yue J et al. High concentration ethanol production from corncob residues by fed-batch strategy. Bioresource Technol.101(13),4952–4958 (2010).
  • Yao L, Yue J, Zhao J, Dong J, Li X, Qu Y. Application of acidic wastewater from monosodium glutamate process in pretreatment and cellulase production for bioconversion of corn stover – feasibility evaluation. Bioresource Technol.101(22),8755–8761 (2010).
  • Liu G, Zhang L, Qin Y et al. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci. Rep.3,1569 (2013).
  • Liu G, Zhang L, Wei X et al. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS ONE8(2),e55185 (2013).
  • Tian C, Beeson WT, Iavarone AT et al. Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc. Natl Acad. Sci. USA106(52),22157–22162 (2009).
  • Zhang Y, Zhang J, Xiao P, Wang T, Qu Y. Improved cellulase production via disruption of PDE01641 in cellulolytic fungus Penicillium decumbens. Bioresource Technol.123,733–737 (2012).
  • Chen M, Qin Y, Cao Q et al. Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. Bioresource Technol.137,33–40 (2013).
  • Li Z, Du C, Zhong Y, Wang T. Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl. Microbiol. Biotech.87(3),1065–1076 (2010).
  • Qin Y, Zheng K, Liu G, Chen M, Qu Y. Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II. Arch. Biol. Sci. Belgrade65(1),305–314 (2013).
  • Steiger MG, Vitikainen M, Uskonen P et al. Transformation system for Hypocrea jecorina (Trichoderma reesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl. Environ. Microbiol.77(1),114–121 (2011).
  • Qu Y, Gao P, Wang Z. Studies on the cellulase system of Penicillium decumbens I. The conditions of enzyme production and reaction of mutant JU1. J. Shandong Univ.21(1),140–143 (1986).
  • De Castro AM, De Albuquerque De Carvalho ML, Leite SG, Pereira N Jr. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J. Ind. Microbiol. Biotech.37(2),151–158 (2010).
  • Castellanos O, Sinitsyn A, Vlasenko EY. Comparative evaluation of hydrolytic efficiency toward microcrystalline cellulose of Penicillium and Trichoderma cellulases. Bioresource Technol.52(2),119–124 (1995).
  • Busto M, Ortega N, Perez-Mateos M. Location, kinetics and stability of cellulases induced in Trichoderma reesei cultures. Bioresource Technol.57(2),187–192 (1996).
  • Wang M, Mu Z, Wang J et al. The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens. Bioresource Technol.133,507–512 (2013).
  • Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng.88(7),797–824 (2004).
  • Sun X, Liu Z, Zheng K, Song X, Qu Y. The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb. Technol.42(7),560–567 (2008).
  • Qu Y, Gao P, Wang Z. Studies on cellulase system from Penicillium decumbens. Acta Microbiol. Sin.28(2),121–130 (1988).
  • Gao L, Gao F, Wang L et al. N-glycoform diversity of cellobiohydrolase I from Penicillium decumbens and the synergism of a nonhydrolytic glycoform in cellulose degradation. J. Biol. Chem.287(19),15906–15915 (2012).
  • Gao L, Wang F, Gao F, Wang L, Zhao J, Qu Y. Purification and characterization of a novel cellobiohydrolase (PdCel6A) from Penicillium decumbens JU-A10 for bioethanol production. Bioresource Technol.102(17),8339–8342 (2011).
  • Liu Z, Sun X, Qu Y. Cloning cellobiohydrolase I from Penicillium decumbens 114–2 with TAIL-PCR and comparing with its derepressed mutant JU-A10. Acta. Microbiol. Sin.48(5),667–671 (2008).
  • Liu G, Wei X, Qin Y, Qu Y. Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114–2. J. Gen. Appl. Microbiol.56(3),223–229 (2010).
  • Wei X, Qin Y, Qu Y. Molecular cloning and characterization of two major endoglucanases from Penicillium decumbens. J. Microbiol. Biotechnol.20(2),265–270 (2010).
  • Gruno M, Valjamae P, Pettersson G, Johansson G. Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol. Bioeng.86(5),503–511 (2004).
  • Shen Y, Zhang Y, Ma T et al. Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresource Technol.99(11),5099–5103 (2008).
  • Chen M, Qin Y, Liu Z, Liu K, Wang F, Qu Y. Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb. Technol.46(6),444–449 (2010).
  • Ma L, Zhang J, Zou G, Wang C, Zhou Z. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a β-glucosidase gene from Penicillium decumbens. Enzyme Microb. Technol. 49(4),366–371 (2011).
  • Phillips CM, Beeson WT, Cate JH, Marletta MA. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem. Biol.6(12),1399–1406 (2011).
  • Punta M, Coggill PC, Eberhardt RY et al. The Pfam protein families database. Nucleic Acids Res.40,D290–D301 (2012).
  • Liu G, Qin Y, Hu Y, Gao M, Peng S, Qu Y. An endo-1,4-β-glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzyme Microb. Technol.52(3),190–195 (2013).
  • Herpoel-Gimbert I, Margeot A, Dolla A et al. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels1(1),18 (2008).
  • Chundawat SP, Lipton MS, Purvine SO et al. Proteomics-based compositional analysis of complex cellulase–hemicellulase mixtures. J. Proteome Res.10(10),4365–4372 (2011).
  • Martinez D, Berka RM, Henrissat B et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat. Biotechnol.26(5),553–560 (2008).
  • Krogh K, Kastberg H, Jørgensen C, Berlin A, Harris P, Olsson L. Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins. Enzyme Microb. Technol.44(6),359–367 (2009).
  • Bouws H, Wattenberg A, Zorn H. Fungal secretomes – nature’s toolbox for white biotechnology. Appl. Microbiol. Biotechnol.80(3),381–388 (2008).
  • Aro N, Pakula T, Penttila M. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev.29(4),719–739 (2005).
  • Qu Y, Gao P, Wang Z. Studies on the cellulase system of Penicillium decumbens II. Physiological characters of the mutant JU1 and regulation of its enzymes synthesis. J. Shandong Univ.22(13),97–104 (1987).
  • Wei X, Zheng K, Chen M et al. Transcription analysis of lignocellulolytic enzymes of Penicillium decumbens 114–2 and its catabolite-repression-resistant mutant. C. R. Biol.334(11),806–811 (2011).
  • Warzywoda M, Ferre V, Pourquie J. Development of a culture medium for large-scale production of cellulolytic enzymes by Trichoderma reesei. Biotechnol. Bioeng.25(12),3005–3011 (1983).
  • Sternberg D, Mandels GR. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J. Bacteriol.139(3),761–769 (1979).
  • Wang D, Qu Y, Gao P. Regulation of cellulase synthesis in mycelial fungi: participation of ATP and cyclic AMP. Biotechnol. Lett.17(6),593–598 (1995).
  • Znameroski EA, Coradetti ST, Roche CM et al. Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc. Natl Acad. Sci. USA109(16),6012–6017 (2012).
  • Schmoll M, Kubicek CP. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus. A review. Acta Microbiol. Immunol. Hung.50(2–3),125–145 (2003).
  • Sun X, Liu Z, Qu Y, Li X. The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl. Biochem. Biotechnol.146(1–3),119–128 (2008).
  • Vaheri M, Leisola M, Kauppinen V. Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnol. Lett.1(1),41–46 (1979).
  • Kurasawa T, Yachi M, Suto M, Kamagata Y, Takao S, Tomita F. Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl. Environ. Microbiol.58(1),106–110 (1992).
  • Schmoll M, Schuster A, Silva Rdo N, Kubicek CP. The G-alpha protein GNA3 of Hypocrea jecorina (anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot. Cell8(3),410–420 (2009).
  • Zhang J, Zhang Y, Zhong Y, Qu Y, Wang T. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS ONE7(11),e48786 (2012).
  • Zhou G, Lv J, Li Z et al. Enhanced cellulase production of Penicillium decumbens by knocking out creB encoding a deubiquitination enzyme. Chin. J. Biotech.28(8),959–972 (2012).
  • Aro N, Ilmen M, Saloheimo A, Penttila M. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol.69(1),56–65 (2003).
  • Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL. Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc. Natl Acad. Sci. USA109(19),7397–7402 (2012).
  • Van Peij NN, Visser J, De Graaff LH. Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol. Microbiol.27(1),131–142 (1998).
  • Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol. Bioeng.52(1),109–121 (1996).
  • Petersen KL, Lehmbeck J, Christensen T. A new transcriptional activator for amylase genes in Aspergillus. Mol. Gen. Genet.262(4–5),668–676 (1999).
  • Mo H, Zhang X, Li Z. Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochem.39(10),1293–1297 (2004).
  • Xu F, Chen H, Li Z. Effect of periodically dynamic changes of air on cellulase production in solid-state fermentation. Enzyme Microb. Technol.30(1),45–48 (2002).
  • Zhang X, Mo H, Zhang J, Li Z. A solid-state bioreactor coupled with forced aeration and pressure oscillation. Biotechnol. Lett.25(5),417–420 (2003).
  • Fang X, Shen Y, Zhao J, Bao X, Qu Y. Status and prospect of lignocellulosic bioethanol production in China. Bioresource Technol.101(13),4814–4819 (2010).
  • Zhao J, Li X, Qu Y. Application of enzymes in producing bleached pulp from wheat straw. Bioresource Technol.97(13),1470–1476 (2006).
  • Chen S, Xing X, Huang J, Xu M. Enzyme-assisted extraction of flavonoids from Ginkgo biloba leaves: improvement effect of flavonol transglycosylation catalyzed by Penicillium decumbens cellulase. Enzyme Microb. Technol.48(1),100–105 (2011).
  • Qu Y, Zhu M, Liu K, Bao X, Lin J. Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol. J.1(11),1235–1240 (2006).
  • Zhao X, Qu Y, Gao P. Acceleration of ethanol production from paper mill waste fiber by supplementation with β-glucosidase. Enzyme Microb. Technol.15(1),62–65 (1993).
  • Visser H, Joosten V, Punt PJ et al. Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind. Biotechnol.7(3),214–223 (2011).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.