2,527
Views
28
CrossRef citations to date
0
Altmetric
Review

Bacterial genomes: what they teach us about cellulose degradation

Pages 669-681 | Published online: 09 Apr 2014

References

  • Yoshiharu N. Structure and properties of the cellulose microfibril. J. Wood Sci.55,241–249 (2009).
  • O’Sullivan AC. Cellulose: the structure slowly unravels. Cellulose4,173–207 (1997).
  • Zhang YH, Cui J, Lynd LR, Kuang LR. A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules7,644–648 (2006).
  • Bucko T, Tunega D, Angyan JG, Hafner J. Ab initio study of structure and interconversion of native cellulose phases. J. Phys. Chem. A.115,10097–10105 (2011).
  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. FEBS J.277,1571–1582 (2010).
  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels3,10 (2010).
  • Himmel ME, Xu Q, Luo Y et al. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels1,323–341 (2010).
  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev.66,506–577 (2002).
  • Weimer PJ, Odt CL. Cellulose degradation by ruminal microbes: physiological and hydrolytic diversity among ruminal cellulolytic bacteria. In: Enzymatic Degradation of Insoluble Carbohydrates. Saddler JN, Penner M (Eds). American Chemical Society, Washington, DC, USA, 291–304 (1996).
  • Yamane K, Suzuki H, Nisizawa K. Purification and properties of extracellular and cell-bound cellulase components of Pseudomonas fluorescens var. cellulosa. J. Biochem.67,19–35 (1970).
  • Sami AJ, Akhter MW. Purification and characterization of three extracellular carboxymethylcellulases of Cellulomonas flavigena. Biochem. Soc. Trans.18,651 (1990).
  • Van Sumere CF, Van Cappellen E. Purification and properties of carboxymethyl cellulase from Aspergillus niger. Arch. Int. Physiol. Biochim.73,377–378 (1965).
  • Wood TM, McCrae SI. The purification and properties of the C 1 component of Trichoderma koningii cellulase. Biochem. J.128,1183–1192 (1972).
  • Shikata S, Nsizawa K. Purification and properties of an exo-cellulase component of novel type from Trichoderma miride. J. Biochem.78,499–512 (1975).
  • Hurst PL, Nielsen J, Sullivan PA, Shepherd MG. Purification and properties of a cellulase from Aspergillus niger. Biochem. J.165,33–41 (1977).
  • Kanda T, Nakakubo S, Wakabayashi K, Nisizawa K. Purification and properties of an exo-cellulase of Avicelase type from a wood-rotting fungus, Irpex lacteus (Polyporus tulipiferae). J. Biochem.84,1217–1226 (1978).
  • Tian X, Wang X. Purification and properties of alkaline cellulase from alkalophilic Bacillus N6–27. Wei Sheng Wu Xue Bao38,310–312 (1998).
  • Wood TM, McCrae SI, Macfarlane CC. The isolation, purification and properties of the cellobiohydrolase component of Penicillium funiculosum cellulase. Biochem. J.189,51–65 (1980).
  • Kanda T, Wakabayashi K, Nisizawa K. Purification and properties of a lower-molecular-weight endo-cellulase from Irpex lacteus (Polyporus tulipiferae). J. Biochem.87,1625–1634 (1980).
  • Bhat S, Goodenough PW, Bhat MK, Owen E. Isolation of four major subunits from Clostridium thermocellum cellulosome and their synergism in the hydrolysis of crystalline cellulose. Int. J. Biol. Macromol.16,335–342 (1994).
  • Ponpium P, Ratanakhanokchai K, Kyu KL. Isolation and properties of a cellulosome-type multienzyme complex of the thermophilic Bacteroides sp. strain P-1. Enzyme Microb. Technol.26,459–465 (2000).
  • Waeonukul R, Kyu KL, Sakka K, Ratanakhanokchai K. Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. J. Biosci. Bioeng.107,610–614 (2009).
  • Seon Park J, Russell JB, Wilson DB. Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85. Anaerobe13,83–88 (2007).
  • Whittle DJ, Kilburn DG, Warren RA, Miller Jr. RC. Molecular cloning of a Cellulomonas fimi cellulose gene in Escherichia coli. Gene17,139–145 (1982).
  • Moser B, Gilkes NR, Kilburn DG, Warren RA, Miller Jr. RC. Purification and characterization of endoglucanase C of Cellulomonas fimi, cloning of the gene, and analysis of in vivo transcripts of the gene. Appl. Environ. Microbiol.55,2480–2487 (1989).
  • Faure E, Bagnara C, Belaich A, Belaich JP. Cloning and expression of two cellulase genes of Clostridium cellulolyticum in Escherichia coli. Gene65,51–58 (1988).
  • Cavicchioli R, Watson K. Molecular cloning, expression, and characterization of endoglucanase genes from Fibrobacter succinogenes AR1. Appl. Environ. Microbiol.57,359–365 (1991).
  • Ozcan N, Cunningham C, Harris WJ. Cloning of a cellulase gene from the rumen anaerobe Fibrobacter succinogenes SD35 and partial characterization of the gene product. Lett. Appl. Microbiol.22,85–89 (1996).
  • Aminov RI, Gribanova LK, Kataeva IA et al. Cloning and expression of Clostridium thermocellum F7 endoglucanase gene in gram-negative bacteria. Genetika26,1391–1398 (1990).
  • Bumazkin BK, Velikodvorskaya GA, Tuka K, Mogutov MA, Strongin A. Cloning of Clostridium thermocellum endoglucanase genes in Escherichia coli. Biochem. Biophys. Res. Commun.167,1057–1064 (1990).
  • Tsoi TV, Bukhtiiarova MG, Aminov RI et al. Cloning and expression of Clostridium thermocellum F7 cellulase genes in Escherichia coli and Bacillus subtilis cells. Genetika26,1349–1360 (1990).
  • Tuka K, Zverlov VV, Bumazkin BK, Velikodvorskaya GA, Strongin A. Cloning and expression of Clostridium thermocellum genes coding for thermostable exoglucanases (cellobiohydrolases) in Escherichia coli cells. Biochem. Biophys. Res. Commun.169,1055–1060 (1990).
  • Romaniec MP, Kobayashi T, Fauth U, Gerngross UT, Demain AL. Cloning and expression of a Clostridium thermocellum DNA fragment that encodes a protein related to cellulosome component SL. Appl. Biochem. Biotechnol.31,119–134 (1991).
  • Li LL, Taghavi S, McCorkle SM et al. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases. Biotechnol. Biofuels4,23 (2011).
  • Ye M, Li G, Liang WQ, Liu YH. Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression. Appl. Microbiol. Biotechnol.87,1023–1031 (2010).
  • Shedova EN, Lunina NA, Berezina OV et al. Expression of the genes CelA and XylA isolated from a fragment of metagenomic DNA in Escherichia coli. Mol. Gen. Mikrobiol. Virusol.2,28–32 (2009).
  • Shedova EN, Berezina OV, Lunina NA et al. Cloning and characterization of a large metagenomic DNA fragment containing glycosyl-hydrolase genes. Mol. Gen. Mikrobiol. Virusol.1,11–15 (2009).
  • Xu YQ, Duan CJ, Zhou QN, Tang JL, Feng JX. Cloning and identification of cellulase genes from uncultured microorganisms in pulp sediments from paper mill effluent. Wei Sheng Wu Xue Bao46,783–788 (2006).
  • Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D. Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnol. Biofuels2,10 (2009).
  • Markowitz VM, Chen IM, Palaniappan K et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res.40,D115–D122 (2012).
  • Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC. CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology20,1574–1584 (2010).
  • Aziz RK, Bartels D, Best AA et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics9,75 (2008).
  • Altschul SF, Madden TL, Schaffer AA et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.25,3389–3402 (1997).
  • Cantarel BL, Coutinho PM, Rancurel C et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res.37,D233–D238 (2009).
  • Finn RD, Mistry J, Tate J et al. The Pfam protein families database. Nucleic Acids Res.38,D211–D222 (2010).
  • Baxevanis AD. Current Protocols in Bioinformatics. John Wiley & Sons, NJ, USA (2002).
  • Mistry J, Finn R. Pfam: a domain-centric method for analyzing proteins and proteomes. Methods Mol. Biol.396,43–58 (2007).
  • Yin Y, Mao X, Yang J et al. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res.40,W445–W451 (2012).
  • Gao D, Chundawat SP, Krishnan C, Balan V, Dale BE. Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour. Technol.101,2770–2781 (2010).
  • Zhong L, Matthews JF, Hansen PI et al. Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose I-beta: the enzyme-substrate complex. Carbohydr. Res.344,1984–1992 (2009).
  • Harris PV, Welner D, McFarland KC et al. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry49,3305–3316 (2010).
  • Mohagheghi A, Grohmann K, Himmel M, Leighton L, Updegraff DM. Isolation and characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a new genus of thermophilic, acidophilic, cellulolytic bacteria. Int. J. Syst. Bacteriol.36,435–443 (1986).
  • Thayer DW, Lowther SV, Phillips JG. Cellulolytic activities of strains of the genus Cellulomonas. Int. J. Syst. Bacteriol.34(4),432–438 (1984).
  • Abt B, Foster B, Lapidus A et al. Complete genome sequence of Cellulomonas flavigena type strain (134). Stand. Genomic Sci.3,15–25 (2010).
  • Christopherson MR, Suen G, Bramhacharya S et al. The genome sequences of Cellulomonas fimi and “Cellvibrio gilvus” reveal the cellulolytic strategies of two facultative anaerobes, transfer of “Cellvibrio gilvus” to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov. PLoS ONE8,e53954 (2013).
  • Miroshnichenko ML, Kublanov IV, Kostrikina NA et al.Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int. J. Syst. Evol. Microbiol.58,1492–1496 (2008).
  • van de Werken HJ, Verhaart MR, VanFossen AL et al. Hydrogenomics of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Appl. Environ. Microbiol.74,6720–6729 (2008).
  • Dam P, Kataeva I, Yang S-J et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res.39(8),3240–3254 (2011).
  • Peterson R, Nevalainen H. Trichoderma reesei RUT-C30 – thirty years of strain improvement. Microbiology158,58–68 (2012).
  • Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev.69,124–154 (2005).
  • Fontes CMGA, Gilbert HJ. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem.79,655–681 (2010).
  • Tamaru Y, Miyake H, Kuroda K, Ueda M, Doi RH. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing. Environ. Technol.31,889–903 (2010).
  • Warnick TA, Methe BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int. J. Syst. Evol. Microbiol.52,1155–1160 (2002).
  • Boekhorst J, de Been MW, Kleerebezem M, Siezen RJ. Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J. Bacteriol.187,4928–4934 (2005).
  • Suen G, Stevenson DM, Bruce DC et al. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J. Bacteriol.193,5574–5575 (2011).
  • Wang ZW, Lee SH, Elkins JG, Morrell-Falvey JL. Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum. AMB Express1,30 (2011).
  • Maruyama Y, Momma M, Mikami B, Hashimoto W, Murata K. Crystal structure of a novel bacterial cell-surface flagellin binding to a polysaccharide. Biochemistry47,1393–1402 (2008).
  • Suen G, Weimer PJ, Stevenson DM et al. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS ONE6,e18814 (2011).
  • Bianchetti CM, Brumm P, Smith RW et al. Structure, dynamics, and specificity of endoglucanase D from Clostridium cellulovorans. J. Mol. Biol. (2013).
  • Mead D, Drinkwater C, Brumm PJ. Genomic and enzymatic results show Bacillus cellulosilyticus uses a novel set of LPXTA carbohydrases to hydrolyze polysaccharides. PLoS ONE8,e61131 (2013).
  • Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG. Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci. Rep.3,1030 (2013).
  • VanFossen AL, Ozdemir I, Zelin SL, Kelly RM. Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng.108,1559–1569 (2011).
  • Stevenson DM, Weimer PJ. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl. Environ. Microbiol.71,4672–4678 (2005).
  • Hyeon JE, Jeon WJ, Whang SY, Han SO. Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb. Technol.48,371–377 (2011).
  • Hyeon JE, Yu KO, Suh DJ et al. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiol. Lett.310,39–47 (2010).
  • Mingardon F, Chanal A, Lopez-Contreras AM et al. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl. Environ. Microbiol.73,3822–3832 (2007).
  • Cho HY, Yukawa H, Inui M, Doi RH, Wong SL. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl. Environ. Microbiol.70,5704–5707 (2004).
  • Olson DG, Tripathi SA, Giannone RJ et al. Deletion of the Cel48S cellulase from Clostridium thermocellum. Proc. Natl Acad. Sci. USA107,17727–17732 (2010).
  • Tolonen AC, Chilaka AC, Church GM. Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol. Microbiol.74,1300–1313 (2009).
  • Bras JL, Cartmell A, Carvalho AL et al. Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. Proc. Natl Acad. Sci. USA108,5237–5242 (2011).
  • Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA. Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl. Environ. Microbiol.76,3236–3243 (2010).
  • Ito Y, Ikeuchi A, Imamura C. Advanced evolutionary molecular engineering to produce thermostable cellulase by using a small but efficient library. Protein Eng. Des. Sel.26,73–79 (2013).
  • Thongekkaew J, Ikeda H, Masaki K, Iefuji H. Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates. Enzyme Microb. Technol.52,241–246 (2013).
  • Mahadevan SA, Wi SG, Lee DS, Bae HJ. Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol. Lett.287,205–211 (2008).
  • Hashimoto W, He J, Wada Y et al. Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry44,13783–13794 (2005).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.