2,043
Views
152
CrossRef citations to date
0
Altmetric
Review

Design of microbial fuel cells for practical application: a review and analysis of scale-up studies

, &
Pages 79-92 | Published online: 09 Apr 2014

References

  • FAO. Coping with Water Scarcity: an Action Framework for Agriculture and Food Security. FAO, Rome, Italy (2012).
  • US EPA Office of Water. Wastewater Management Fact Sheet, Energy Conservation. US EPA, Washington, DC, USA (2006).
  • Curtis TP. Low-energy wastewater treatment: strategies and technologies. In: Environmental Microbiology. Mitchell R, Gu JD (Eds). John Wiley & Sons, Inc., NY, USA, 301–318 (2010).
  • McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer – can this be achieved? Environ. Sci. Technol.45(17),7100–7106 (2011).
  • Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol.38(7),2281–2285 (2004).
  • Wei J, Liang P, Huang X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol.102(20),9335–9344 (2011).
  • Kumar GG, Sarathi VGS, Nahm KS. Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron.43,461–475 (2013).
  • Logan BE. Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol.85(6),1665–1671 (2010).
  • Li W-W, Sheng G-P, Liu X-W, Yu H-Q. Recent advances in the separators for microbial fuel cells. Bioresour. Technol.102(1),244–252 (2011).
  • Oliveira VB, Simões M, Melo LF, Pinto AMFR. Overview on the developments of microbial fuel cells. Biochem. Eng. J.73,53–64 (2013).
  • Liu H, Cheng S, Huang L, Logan BE. Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources179(1),274–279 (2008).
  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol.70(9),5373–5382 (2004).
  • Cheng S, Logan BE. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour. Technol.102(6),4468–4473 (2011).
  • Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol.69(3),1548–1555 (2003).
  • Fan Y, Han S-K, Liu H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci.5(8),8273 (2012).
  • Li Z, Yao L, Kong L, Liu H. Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour. Technol.99(6),1650–1655 (2008).
  • Kim JR, Rodríguez J, Hawkes FR, Dinsdale RM, Guwy AJ, Premier GC. Increasing power recovery and organic removal efficiency using extended longitudinal tubular microbial fuel cell (MFC) reactors. Energy Environ. Sci.4(2),459–465 (2011).
  • Gálvez A, Greenman J, Ieropoulos I. Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Bioresour. Technol.100(21),5085–5091 (2009).
  • Zhuang L, Zheng Y, Zhou S, Yuan Y, Yuan H, Chen Y. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour. Technol.106,82–88 (2012).
  • Zhuang L, Yuan Y, Wang Y, Zhou S. Long-term evaluation of a 10-liter serpentine-type microbial fuel cell stack treating brewery wastewater. Bioresour. Technol.123,406–412 (2012).
  • Zhang F, Ge Z, Grimaud J, Hurst J, He Z. Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environ. Sci. Technol.47(9),4941–4948 (2013).
  • Zhang F, Ge Z, Grimaud J, Hurst J, He Z. In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant. Bioresour. Technol.136,316–321 (2013).
  • Scott K, Murano C, Rimbu G. A tubular microbial fuel cell. J. Appl. Electrochem.37(9),1063–1068 (2007).
  • Jiang D, Curtis M, Troop E et al. A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. Int. J. Hydrogen Energy36(1),876–884 (2011).
  • Lefebvre O, Shen Y, Tan Z, Uzabiaga A, Chang IS, Ng HY. Full-loop operation and cathodic acidification of a microbial fuel cell operated on domestic wastewater. Bioresour. Technol.102(10),5841–5848 (2011)
  • Ge Z, Zhang F, Grimaud J, Hurst J, He Z. Long-term investigation of microbial fuel cells treating primary sludge or digested sludge. Bioresour. Technol.136,509–514 (2013).
  • Zhuang L, Zhou S. Substrate cross-conduction effect on the performance of serially connected microbial fuel cell stack. Electrochem. Commun.11(5),937–940 (2009).
  • Zhuang L, Zhou S, Wang Y, Liu C, Geng S. Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells. Biosens. Bioelectron.24(12),3652–3656 (2009).
  • Zhang F, Jacobson KS, Torres P, He Z. Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell. Energy Environ. Sci.3(9),1347–1352 (2010).
  • Kim JR, Premier GC, Hawkes FR, Rodríguez J, Dinsdale RM, Guwy AJ. Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour. Technol.101(4),1190–1198 (2010).
  • Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J. Power Sources187(2),393–399 (2009).
  • Keller J, Rabaey K. Experiences from MFC pilot plant operations. Presented at: Microbial Fuel Cells-First International Symposium. PA, USA, 27–29 May 2008.
  • Jiang D, Li B. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): a design suitable for large-scale wastewater treatment processes. Biochem. Eng. J.47(1),31–37 (2009).
  • You S, Zhao Q, Zhang J et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions. J. Power Sources173(1),172–177 (2007).
  • Clauwaert P, Mulenga S, Aelterman P, Verstraete W. Litre-scale microbial fuel cells operated in a complete loop. Appl. Microbiol. Biotechnol.83(2),241–247 (2009).
  • Dekker A, Heijne AT, Saakes M, Hamelers HVM, Buisman CJN. Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ. Sci. Technol.43(23),9038–9042 (2009).
  • Ter Heijne A, Liu F, van Rijnsoever LS, Saakes M, Hamelers HVM, Buisman CJN. Performance of a scaled-up microbial fuel cell with iron reduction as the cathode reaction. J. Power Sources.196(18),7572–7577 (2011).
  • Liang P, Fan M, Cao X, Huang X. Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells. J. Chem. Technol. Biotechnol.84(5),794–799 (2009).
  • Ter Heijne A, Hamelers HVM, Saakes M, Buisman CJN. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim. Acta53(18),5697–5703 (2008).
  • Fan Y, Hu H, Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Sources171(2),348–354 (2007).
  • Cheng S, Liu H, Logan BE. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol.40(7),2426–2432 (2006).
  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol.40(10),3388–3394 (2006).
  • Ieropoulos I, Greenman J, Melhuish C. Microbial fuel cells based on carbon veil electrodes: stack configuration and scalability. Int. J. Energy Res.32(13),1228–1240 (2008).
  • Gurung A, Oh S-E. The performance of serially and parallelly connected microbial fuel cells. Energ. Source. Part A34(17),1591–1598 (2012).
  • Oh S-E, Logan BE. Voltage reversal during microbial fuel cell stack operation. J. Power Sources167(1),11–17 (2007).
  • Fan Y, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol.42(21),8101–8107 (2008).
  • Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol.39(14),5488–5493 (2005).
  • Hays S, Zhang F, Logan BE. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater. J. Power Sources196(20),8293–8300 (2011).
  • Logan B, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol.41(9),3341–3346 (2007).
  • Hutchinson AJ, Tokash JC, Logan BE. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. J. Power Sources196(22),9213–9219 (2011).
  • Ahn Y, Logan BE. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresour. Technol.101(2),469–475 (2010).
  • Fan Y, Hu H, Liu H. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol.41(23),8154–8158 (2007).
  • Zhang X, Cheng S, Huang X, Logan BE. The use of nylon and glass fiber filter separators with different pore sizes in air-cathode single-chamber microbial fuel cells. Energy Environ. Sci.3(5),659–664 (2010).
  • Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol.38(14),4040–4046 (2004).
  • Zhang X, Cheng S, Huang X, Logan BE. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosens. Bioelectron.25(7),1825–1828 (2010).
  • Ghasemi M, Daud WRW, Hassan SHA et al. Nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J. Alloys Compd.580,245–255 (2013).
  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol.101(6),1533–1543 (2010).

▪ Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.