449
Views
33
CrossRef citations to date
0
Altmetric
Review

Sorghum biomass: a novel renewable carbon source for industrial bioproducts

, , , , , , & show all
Pages 159-174 | Published online: 09 Apr 2014

References

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthome P. Land clearing and the biofuel carbon debt. Science319,1235–1238 (2008).
  • Rao SP, Rao SS, Seetharama N et al. Sweet sorghum for biofuel and strategies for its improvement. Information Bulletin No. 77. International Crops Research Institute for Semi-Arid Tropics, Andhra Pradesh, India, 80 (2009).
  • Weimer PJ, Dien BS, Springer TL, Vogel KP. In vitro gasproduction as a surrogate measure of the fermentability of cellulosic biomass to ethanol. Appl. Microbiol. Biotechnol.67,52–58 (2005).
  • Lorenz AJ, Anex RP, Isci A, Coors JG, de Leon N, Weimer PJ. Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover. Biotechnol.Biofuels2,5 (2009).
  • Wolfrum EJ, Lorenz AJ, de Leon N. Correlating detergent fiber analysis and dietary fiber analysis data for corn stover collected by NIRS. Cellulose16,577–585 (2009).
  • Chi F, Chen H. Absorption of ethanol by steam-exploded corn stalk. Bioresour. Technol.100,1315–1318 (2009).
  • Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP. Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem. Eng. J.38(1),105–109 (2008).
  • Mamma D, Christakopoulos P, Koullas D, Kekos D, Macris BJ, Koukios E. An alternative approach to the bioconversion of sweet sorghum carbohydrates to ethanol. Biomass Bioenergy8(2),99–103 (1995).
  • Pattra S, Sangyoka S, Boonmee M, Reungsang A. Biohydrogen production from the fermentation of sugarcane bagassehydrolysate by Clostridium butyricum. Int. J. Hydrogen. Energy33,5256–5265 (2008).
  • Yokoi H, Saitsu AS, Uchida H, Hirose J, Hayashi S, Takasaki Y. Microbial hydrogen production from sweet potato starchresidue. J. Biosci. Bioeng.91,58–63 (2001).
  • Antonopoulou G, GavalaHariklia N, SkiadasIoannis V, Angeloulos K, Gerasimos L. Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour. Technol.99,110–119 (2008).
  • Bardiya N, Somayaji D, Khanna S. Biomethanation of banana peel and pineapple waste. Bioresour. Technol.58,73–76 (1996).
  • Nagaiah D, Srinivasa Rao P et al. High biomass sorghum as a potential raw material for biohydrogen production: a preliminary evaluation. Curr. Trends Biotechnol. Pharm.6,183–189 (2012).
  • Balat M, Balat H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energ.86,2273–2282 (2009).
  • Goldenberg J, Guardabassi P. The potential for first-generation ethanol production from sugarcane. Biofuel. Bioprod. Bior.4(1),17–41 (2010).
  • Kim S, Dale BE. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy26(4),361–375 (2004).
  • Byrt CS, Grof CPL, Furbank RT. C4 Plants as biofuel feedstocks: optimizing biomass production and feedstock quality from a lignocellulosic perspective. J. Integr. Plant Biol.53(2),120–135 (2011).
  • Propheter JL, Staggenborg SA, Wu X, Wang D. Performanceof annual and perennial biofuel crops: yield during the first two years. Agronomy J.102,806–814 (2010).
  • Renouf MA, Wegener MK, Nielson LK. An environmental lifecycle assessment comparing Australian sugarcane with US corn and UK sugar beet as producers of sugars for fermentation. Biomass Bioenergy31,1144–1155 (2008).
  • Lingle SE, Viator RP, Johnson RM, Tew TL, Boykin DL. Recurrent selection for sucrose content has altered growth and sugar accumulation in sugarcane. Field Crop. Res.113,306–311 (2009).
  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP. Feedstocks for lignocellulsic biofuels. Science329,790–792 (2010).
  • Hattori T, Morita S. Energy crops for sustainable bioethanolproduction; which, where and how? Plant Prod. Sci.13(3),221–234 (2010).
  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, XieGH. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crop. Res.111,55–64 (2009).
  • Reddy MS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicagosativa L.). Proc. Natl Acad. Sci. USA102,16573–16578 (2005).
  • Bennett AS, Anex RP. Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresour. Technol.100,1595–1607 (2009).
  • Dohleman FG, Long SP. More productive than maize in the Midwest: how does miscanthus do it? Plant Physiol.150,2104–2115 (2009).
  • Rooney WL, Blumenthal J, Bean B, Mullet JE. Designing sorghum as a dedicated bioenergy feedstock. Biofuel. Bioprod.Bioref.1,147–157 (2007).
  • Heaton EA, Clifton-Brown J, Voigt TB, Jones MB, Long SP. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitig. Adapt. Strat. Gl.9,433–451 (2004).
  • Lee TSG, Bressan EA. The potential of ethanol production from sugarcane in Brazil. Sugar Tech.8,195–198 (2006).
  • Labrecque M, Teodorescu TI. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppicein southern Quebec (Canada). Biomass Bioenergy29,1–9 (2005).
  • Wilson JP, McAloon AJ, Yee W, McKinney J, Wang D, Bean SR. Biological and economic feasibility of pearl millet as a feedstock for ethanol production. In: Issues in New Crops and New Uses. Janick J, Whipkey A (Eds). ASHS Press, Alexandria, VA, USA (2007).
  • García-Aparicio M, Parawira W, Van Rensburg E et al. Evaluation of steam-treated giant bamboo for production of fermentable sugars. Biotech. Prog.27,641–649 (2011).
  • Bura R, Ewanick S, Gustatson R. Assessment of Arundodonax (giant reed) as a feedstock for conversion to ethanol. Tappi J.4,59–66 (2012).
  • Nghiem NP, Hicks KB, Johnston DB et al. Production of ethanol from winter barley by the EDGE (enhanced dry grind enzymatic) process. Biotechnol. Biofuels3,8 (2012).
  • Erdei B, Barta Z, Sipos B, Réczey K, Galbe M, Zacchi G. Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol. Biofuels3,16 (2012).
  • Smith GA, Bagby MO, Lewellan R et al. Evaluation of sweet Sorghum for fermentable sugar production potential. Crop Sci.27,788–793 (1987).
  • Committee on World Food Security. Biofuels and Food Security. A Report by the High Level Panel of Experts on Food Security and Nutrition. of, High Level Panel of Experts on Food Security and Nutrition, Rome, Italy (2013).
  • Paterson AH, Bowers JE, Bruggmann R et al. The Sorghum bicolor genome and the diversification of grasses. Nature457,551–556 (2009).
  • Food and Agriculture Organization. Sorghum bicolor (L.) Moench. www.fao.org/ag/agp/agpc/doc/gbase/data/pf000319.htm
  • FAOSTAT. Final 2011 data and preliminary 2012 data for 5 major commodity aggregates now available.http://faostat.fao.org/site/339/default.aspx
  • Sanderson MA, Jones RM, Ward J, Wolfe R. Silage Sorghum Performance Trial at Stephenville (Forage Research in Texas. Report PR-5018). Texas Agriculture Experiment Station, Stephenville, USA (1992).
  • Furbank RT, von Caemmerer S, Sheehy J, Edwards GE. C4rice: a challenge for plant phenomics. Funct. Plant Biol.36,845–856 (2009).
  • Long SP, Ort DR. More than taking the heat: crops and global change. Curr. Opin. Plant Bio.13,241–248 (2010).
  • Rubio G, Gutierrez Boem FH, Lavado RS. Responses of C3 and C4 grasses to application of nitrogen and phosphorus fertilizer at two dates in the spring. Grass Forage Sci.65,102–109 (2010).
  • Prasad PVV, Vu JCV, Boote KJ, Allen LH. Enhancement in leaf photosynthesis and upregulation of Rubisco in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny. Funct. Plant Biol.36(9),761–769 (2009).
  • Vu JCV, Allen LH Jr. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature. J. Plant Phys.11,1141–1151(2009).
  • Steduto P, Albrizio R. Resource use efficiency of field-grown sun flower, sorghum, wheat and chickpea II. Water use efficiency and comparison with radiation use efficiency. Agric. For. Meteorol.130,269–281 (2005).
  • Conley MM, Kimball BA, Brooks TJ et al. CO2 enrichment increases water-use efficiency in sorghum. New Phytol.151,407–412 (2001).
  • Vasilakoglou I, Dhima K, Karagiannidis N, Gatsis T. Sweet sorghum productivity for biofuels under increased soil salinity and reduced irrigation. Field Crop Res.120(1),36–48 (2010).
  • Jaisil P. Feasibility study on sweet sorghum production as raw materials for commercial ethanol production. Proceedings of the International conference on Agricultural, Food and Biological Engineering & Post Harvest/ProductionTechnology. Khon Kaen, Thailand, 21–24 January 2007.
  • Blümmel M, Rao SS, Palaniswami S, Shah L, Reddy BVS. Evaluation of sweet sorghum [Sorghum bicolor (L.) Moench] used for bio-ethanol production in the context of whole plant utilization. Anim. Nutr. Feed Technol.9,1–10 (2009).
  • Ratanavathi CV, Dayakar Rao B, Seetharama N. Sweet Sorghum Stalk: A Suitable Raw Material for Fuel Alcohol Production. National Research Center for Sorghum, Andhra Pradesh, India (2003).
  • Shukla GK, Gupta SK, Singh L, Rao SS, Rathavathi CV, DayakarRao B. Successful pilot production of bio-ethanol from sweet sorghum in sub-tropical India. Jowar Samachar2,1 (2006).
  • Tew TL, Cobill RM, Richard JEP. Evaluation of sweet sorghum and sorghum × sudan grass hybrids as feedstocks for ethanol production. Bioenerg. Res.1,147–152 (2008).
  • Grassi G, Tondi G, Helm P. Small-sized Commercial Bioenergy Technologies as an Instrument of Rural Development. Biomass and Agriculture: Sustainability, Markets and Policies. OECD Publication Service, Paris, France, 277–287 (2004).
  • Vermerris W. Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcan. J. Integr. Plant Biol.53,105–119 (2011).
  • Schnable PS, Ware D, Fulton RS et al. The B73 maize genome: complexity, diversity, and dynamics. Science326,1112–1115 (2009).
  • Tenenbaum DJ. Food vs. fuel: diversion of crops could cause more hunger. Environ. Health Perspect.116,A254–A257 (2008).
  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science319,1235–1238 (2008).
  • Searchinger T, Heimlich R, Houghton RA et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science319,1238–1240 (2008).
  • Matsuoka S, Ferro J, Arruda P. The Brazilian experience of sugarcane ethanol industry. In Vitro Cell Dev. Biol.45,372–381(2009).
  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol. J.. 8,263–276 (2010).
  • Tew TL, Cobill RM. Genetic improvement of sugarcane (Saccharum spp.) as an energy crop. In: Genetic Improvement of Bioenergy Crops. Vermerris W (Ed.). Springer, New York, USA, 249–272 (2008).
  • Dahlberg J, Berenji J, Sikora V, Latković D. Assessing sorghum [Sorghum bicolor (L) Moench] germplasm for new traits: food, fuels & unique uses. Maydica56(1750),85–92 (2011).
  • Venuto B, Kindiger B. Forage and biomass feedstock production from hybrid forage sorghum and sorghum-sudan grass. Grassl. Sci.54,189–196 (2008).
  • Saballos A, Vermerris W, Rivera L, Ejeta G. Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenerg. Res.1,193–204 (2008).
  • Murray SC, Sharma A, Roone WL et al. Genetic improvement of sorghum as a biofuel feedstock I: quantitative loci for stem sugar and grain non-structural carbohydrates. Crop Sci.48,2165–2179 (2008).
  • Chaudhary N, Qazi JI. Lignocellulose for ethanol production: a review of issues relating to bagasse as a source material. Afr. J. Biotechnol.10,1270–1274 (2011).
  • Dien BS, Gautam S, Pedersen JF et al. Improved sugar conversion and ethanol yield for forage sorghum (Sorghum bicolor L. Moench) lines with reduced lignin contents. Bioenerg. Res.2,153–164 (2009).
  • Massoud MI, Abd El-Razek AM. Suitability of Sorghum bicolor L. stalks and grains for bioproduction of ethanol. Ann. Agric. Sci.56,83–87 (2011).
  • Dogaris I, Gkounta O, Mamma D, Kekos D. Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl. Microbiol. Biotechnol.95,541–550 (2012).
  • Kamarudin MH, Nadir N, Mel M, Abdulkarim MI. Comparison of sago and sweet sorghum for Ethanol production using Saccharomyces cerevisiae. Presented at: Malaysian International Conference on Trends in Bioprocess Engineering (MICOTriBE). Langkawi, 3–5 July 2012.
  • Han M, Kim Y, Koo B-C, Choi G-W. Bioethanol production by miscanthus as a lignocellulosic biomass: focus on high efficiency conversion to glucose and ethanol. Bioresources6,1939–1953 (2011).
  • McKendry P. Energy production from biomass (part I): overview of biomass. Bioresour. Technol.83,37–46 (2002).
  • US Department of Energy – Office of energy efficiency and renewable energy. Biomass feedstock and composition database.www.afdc.energy.gov/biomass/progs/search1.cgi
  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A. Miscanthus: a fast- growing crop for biofuels and chemicals production. Biofuels Bioprod. Bioref.6,580–598 (2012).
  • Wilkinson JM, Evans EJ, Bilsborrow PE, Wright C, Hewison WO, Pilbeam DJ. Yield of willow cultivars at different planting densities in a commercial short rotation coppice in the north of England. Biomass Bioenergy31,469–474 (2007).
  • Sannigrahi P, Ragauskas AJ, Tuskan GA. Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod. Bioref.4,209–226 (2010).
  • Ali D, Soewarno N, Sumarno, Primarini D, Sumaryo W. Cassava pulp as a biofuel feedstock of an enzymatic hydrolysis process. Makara Teknologi15(2),183–192 (2011).
  • Ansah T, Osafo ELK, Hansen HH. Yield and chemical composition of four varieties of Napier (Pennisetum purpureum) grass harvested at three different days after planting. Agric. Biol. J. N. Am.1,923–929 (2010).
  • Harinarayana G, Melkania NP, Reddy BVS, Gupta SK, Rai KN, Sateesh Kumar P. Forage Potential of Sorghum and Pearl Millet. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India, 292–391 (2008).
  • Wongwatanapaiboon J, Kangvansaichol K, Burapatana V et al. The potential of cellulosic ethanol production from grasses in Thailand. J. Biomed. Biotechnol.2012,303748 (2012).
  • Shatalov AA, Pereira H. Paper making fibres from giant reed. BioResources1,45–61(2006).
  • Dehnavi GZ, Laucerica JL, Rodríguez D, Beatón M, Taherzadeh MJ, Martin C. Fractionation of the main components of barley spent grains from a microbrewery. Cellulose Chem. Technol.45,339–345 (2011).
  • Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnk RL. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresour. Technol.114,663–669 (2012).
  • Huang C, Han L, Liu X, Ma L. The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy. Energ. Source Part A33(2),114–120 (2010).
  • Porter KS, Axtell JD, Lechtenberg VL, Colenbrander VF. Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) mutants of sorghum. Crop Sci.18,205–208 (1978).
  • Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci.47(Suppl. 3) S142–S153 (2007).
  • Saballos A, Vermerris W, Rivera L, Ejeta G. Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). BioEnerg. Res.2,193–204 (2008).
  • Bout S, Vermerris W. A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyl transeferase. Mol. Genet. Genomics269,205–214 (2003).
  • Saballos A, Ejeta G, Sanchez E, Kang C, Vermerris W. A genomewide analysis of the cinnamyl alcohol dehydrogenase family in Sorghum [Sorghum bicolor (L.)Moench] identifies SbCAD2 as the brown midrib6 gene. Genetics181,783–795 (2009).
  • Sattler SE, Funnell-Harris DL, Pedersen JF. Brown midrib mutations and their importance to the utilization of maize, sorghum, and pearl millet lignocellulosic tissues. Plant Sci.178,229–238 (2010).
  • Oliver AL, Pedersen JF, Grant RJ, Klopfenstein TJ. Comparative effects of the Sorghum bmr-6 and bmr-12 genes: I. Forage sorghum yield and quality. Crop Sci.45(6),2234–2239 (2005).
  • Miller JE, Geadelmann JL, Marten GC. Effect of the brown midrib-allele on maize silage quality and yield. Crop Sci.23,493–496 (1983).
  • Oliver AL, Grant RJ, Pedersen JF, O’Rear J. Comparison of brown midrib-6 and -18 forage sorghum with conventional sorghum and corn silage in diets of lactating dairy cows. J. Dairy Sci.87,637–644 (2004).
  • Thorstensson EMG, Buxton DR, Cherney JH. Apparent inhibition to digestion by lignin in normal and brown midrib stems. J. Sci. Food Agric.59,183–188 (1992).
  • Banerjee G, Car S, Scott-Craig JS, Borrusch MS, Aslam N, Walton JD. Synthetic enzyme mixtures for biomass deconstruction: production and optimization of a core set. Biotechnol. Bioengineer.106,707–720 (2010).
  • Merino ST, Cherry J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol.108,95–120 (2007).
  • Sakakibara A. A structural model of softwood lignin. Wood Sci. Technol.14,89–100 (1980).
  • Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol.83,1–11 (2002).
  • Hoshino E, Kanda T, Sasaki Y, Nisizawa K. Adsorption mode of exo-cellulases and endo-cellulases from irpex-lacteus (Polyporus, Tulipiferae) on cellulose with different crystallinities. J. Biochem.111,600–605 (1992).
  • Hoshino E, Shiroishi M, Amano Y, Nomura M, Kanda T. Synergistic actions of exo-type cellulases in the hydrolysis of cellulose with different crystallinities. J. Ferment. Bioeng.84,300–306 (1997).
  • Nimz H. Beech lignin–proposal of a constitutional scheme. Angew. Chem. Int. Ed. Engl.13(5),313–321 (1974).
  • Rubin E. Genomics of cellulosic biofuels. Nature454,841–845 (2008).
  • Bunzel H, Christensen BJ, Jensen P et al. Specification and estimation of equilibrium search models. Rev. Econ. Dyn.4,90–126 (2001).
  • Sun SL, Wen JL, Ma MG, Li MF, Sun RC. Revealing the structural in homogeneity of lignins from sweet sorghum stem by successive alkali extractions. J. Agric. Food Chem.61(18),4226–4235 (2013).
  • Antizar-Ladislao B, Turrion-Gomez J. Second-generation biofuels and local bioenergy systems. Biofuel. Bioprod.Bioref.2,455–469 (2008).
  • Chiranjeevi T, Baby Rani G, Radhika K, Prakasham RS, Uma A. The effect of assorted pretreatments on cellulose of selected vegetable waste and enzymatic hydrolysis. Biomass Bioenergy49,205–213 (2013).
  • Garlock RJ, Balan V, Dale BE, Pallapolu VR, Lee YY, Kim Y. Comparative material balances around pretreatment technologies for the conversion of switchgrass to soluble sugars. Bioresour. Technol.102(24),11063–11071 (2011).
  • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol.74,25–33 (2000).
  • Prakasham RS, Brahmaiah P, Nagaiah D, SrinivasaRao P, Reddy Belum VS, Sreenivas R, Hobbs Phil J. Impact of low lignin containing brown midrib sorghum mutants to harness biohydrogen production using mixed anaerobic consortia. Intl. J. Hydrogen Energy37,3186–3190 (2012).
  • Corredor DY, Salazar JM, Hohn KL, Bean S, Bean B, Wang D. Evaluation and characterization of forage sorghum as feedstock for fermentable sugar production. Appl. Biochem. Biotechnol.158(1),164–179 (2009).
  • Vandenbrink JP, Goff V, Jin H, Kong W, Paterson AH, Feltus FA. Identification of bioconversion quantitative trait loci in the inter-specific cross Sorghum bicolor × Soghum propinquum. Theor. Appl. Genet.126,2367–2380 (2013).
  • Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev.107,2411–2502 (2007).
  • Srinivasa Rao P, Ravikumar S, Prakasham RS, Deshpande S, Reddy BVS. Bmr - from efficient fodder trait to novel substrate for futuristic biofuel: way forward. In: Brown Midrib Sorghum – Current Status and Potential as Novel Ligno-Cellulosic Feedstock of Beioenergy. Srinivasa Rao P, Prakasham RS, Deshpande S (Eds). Lambert Academic Publishing GmbH & Co. KG, Saarbrücken, Germany, 99–112 (2010).
  • Herrera A, Tellez-Luis SJ, Ramirez JA, Vazquez M. Production of xylose from sorghum straw using hydrochloric acid. J. Cereal Sci.37,267–274 (2003).
  • Herrera A, Tellez-Luis SJ, Gonzalez-Cabriales JJ, Ramirez JA, Vazquez M. Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. J. Food Eng.63,103–109 (2004).
  • Vazquez M, Oliva M, Tellez-Luis SJ, Ramirez JA. Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour. Technol.98,3053–3060 (2007).
  • Poonsrisawat A, Phuengjayaem S, Petsom A, Teeradakorn S. Conversion of sweet sorghum straw to sugars by dilute acid saccharification. Sugar Tech15,322–327 (2013).
  • Liu XJ, Lu MZ, Ai N, Yu FW, Ji JB. Kinetic model analysis of dilute sulfuric acid-catalyzed hemicellulose hydrolysis in sweet sorghum bagasse for xylose production. Ind. Crops Prod.38,81–86 (2012).
  • Yu Q, Zhuang X, Yuan Z et al. Hydrolysis of sweet sorghum bagasse hemicellulose with liquid hot water and its mechanism. Huagong Xuebao63,599–605 (2012).
  • Fukuoka A, Dhepe PL. Catalytic conversion of cellulose into sugar alcohols. Angew. Chem. Int. Ed. Engl.45,5161–5163 (2006).
  • Yan N, Zhao C, Luo C, Dyson PJ, Liu HC, Kou Y. One-step conversion of cellobiose to C-6-alcohols using a ruthenium nanocluster catalyst. J. Am. Chem. Soc.128,8714–8715 (2006).
  • Ji N, Zhang T, Zheng MY et al. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed. Engl.47,8510–8513 (2008).
  • Zheng M, Zhang T, Pang J, Jiang Y, Wang A, Wang X: CN102731254A (2012).
  • Zhu P, Tang Y, Xue QS, Li J-F, Lu Y. Microwave-assisted hydrolysis of cellulose using metal chloride as Lewis acid catalysts. Ranliao Huaxue Xuebao37,244–247 (2009).
  • Tan MX, Zhao L, Zhang Y. Production of 5-hydroxymethyl furfural from cellulose in CrCl2/Zeolite/BMIMCl system. Biomass Bioenergy35,1367–1370 (2011).
  • Tian G, Tong X, Cheng Y, Xue S. Tin-catalyzed efficient conversion of carbohydrates for the production of 5-hydroxymethylfurfural in the presence of quaternary ammonium salts. Carbohydr. Res.370,33–37 (2013).
  • Stahlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A. Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem. Eur. J.17(5),1456–1464 (2011).
  • Li Y, Yuan Y: CN102977057A (2013).
  • Hou X, Deng T, Zhu Y, Li L: CN101948452A (2011).
  • Li R, Shang H, Wu P, Wu Z, Yang W: CN101648863A (2010).
  • Chen H, Jin, S: CN101348430A. (2009).
  • Fang Q, Hanna MA. Experimental studies for levulinic acid production from whole kernel grain sorghum. Bioresour. Technol.81,187–192 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.