341
Views
15
CrossRef citations to date
0
Altmetric
Review

Ecobiological aspects of algae cultivation in wastewaters for recycling of nutrients and biofuel applications

, , , , , , & show all
Pages 141-158 | Published online: 09 Apr 2014

References

  • Chisti Y. Raceways-based production of algal crude oil. In: Microalgal Biotechnology: Potential and Production. Posten C, Walter C (Eds). de Gruyter, Berlin, Germany, 113–146 (2012).
  • Singh J, Gua S. Commercialization potential of microalgae for biofuels production. Renew. Sust. Energ. Rev.14,2596–2610 (2010).
  • Scott S, Davey MP, Dennis JS et al. Biodiesel from algae: challenges and prospects. Curr. Opinn. Biotech.21,277–286 (2010).
  • Trentacoste EM, Shrestha RP, Smith, SR et al. In: Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl Acad. Sci. USA110(49),19748–19753 (2013).
  • Ratledge C, Cohen Z. Microbial and algal oils: do they have a future for biodiesel or as commodity oils? Lipid Technol.20(7),155–160 (2008).
  • Pate R, Klise G, Wu B. Resource demand implications for U.S. algae biofuels production scale-up. Appl. Energ.88(10),3377–3388 (2011).
  • Pate RC. Resource requirements for the large-scale production of algal biofuels. Biofuels4,409–435 (2013).
  • Chisti Y. Constraints to commercialization of algal fuels. J. Biotechnol.167,201– 214 (2013).
  • Havens KE, Hauxwell J, Tyler AC et al. Complex interactions between autotrophs in shallow marine and freshwater ecosystems: implications for community responses to nutrient stress. Environ. Poll.113(1),95–107 (2001).
  • Rawat I, Kumar RR, Mutanda T, Bux F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energ.88(10),3411–3424 (2011).
  • Renuka N, Sood A, Prasanna R, Ahluwalia AS. Influence of seasonal variation in water quality on the microalgal diversity of sewage wastewater. S. Afr. J. Bot.90,137–145 (2014).
  • Wolk C. Heterocyst formation. Annu. Rev. Genet.30(1),59–78 (1996).
  • Dalrymple OK, Halfhide T, Udom I et al. Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat. Biosyst.9(1),2 (2013).
  • Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol.102(1),17–25 (2011).
  • Cantalupo PG, Calgua B, Zhao G et al. Raw sewage harbors diverse viral populations. MBio2(5),e00180–11 (2011).
  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol.101(9),3097–3105 (2010).
  • Li P, Wang Y, Wang Y, Liu K, Tong L. Bacterial community structure and diversity during establishment of an anaerobic bioreactor to treat swine wastewater. Water Sci. Technol.61(1),243–251 (2010).
  • Sood A, Uniyal PK, Prasanna R, Ahluwalia AS. Phytoremediation potential of aquatic macrophyte, Azolla. Ambio41(2),122–137 (2011).
  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water. Int. J. Phytoremed.15(8),789–800 (2013a).
  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS. Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J. Appl. Phycol.25(5),1529–1537 (2013b).
  • Roselene H, Paneerselvam. Physico chemical analysis and role of phytoplanktons in Bellandur lake. In: Proceedings of Taal 2007. Sengupta M, Dalwani R (Eds). International Lake Environment Committee Foundation, Shiga, Japan, 1729–1736 (2008).
  • Senthil P, Jeyachandran S, Manoharan C, Vijayakumar. Microbial diversity in rubber industry effluent. Int. J. Pharma. Bio. Sci.2(1),123–131 (2012).
  • de Godos I, Guzman HO, Soto R et al. Coagulation/flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment. Bioresour. Technol.102(2),923–927 (2011).
  • Zhou W, Cheng Y, Li Y et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl. Biochem. Biotechnol.167(2),214–228 (2012).
  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF. Trophic cascades revealed in diverse ecosystems. TREE14(12),483–488 (1999).
  • Verschoor AM, Vos M, Van der Stap I. Inducible defences prevent strong population fluctuation in bi- and tritrophic food chains. Ecol. Lett.7(12),1143–1148 (2004).
  • Vos M, Kooi BW, DeAngelis DL, Mooij WM. Inducible defences and the paradox of enrichment. Oikos105(3),471–480 (2004a).
  • Vos M, Verschoor AM, Kooi BW, Wackers FL, De Angelis DL, Mooij WM. Inducible defences and trophic structure. Ecology85(10),2783–2794 (2004).
  • Ferdoushi Z, Haque F, Khan S. The Effects of two Aquatic Floating Macrophytes (Lemna and Azolla) as Biofilters of Nitrogen and Phosphate in Fish Ponds. Turk. J. Fish Aquat. Sci.8(2),253–258 (2008).
  • Vasconcelos VM, Pereira E. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res.35(5),1354–1357 (2001).
  • Badr SA, Ghazy MME, Moghazi RM. Toxicity assessment of cyanobacteria in a wastewater treatment plant, Egypt. J. Appl. Sci. Res.6(10),1511–1516 (2010).
  • Dubey SK, Dubey J, Viswas AJ, Tiwali P. Studies on cyanobacterial biodiversity in paper mill and pharmaceutical industrial effluents. Br. Biotechnol. J.1(3),61–67 (2011).
  • Vos M, Kooi BW, DeAngelis DL, Mooij WM. Inducible defences and the paradox of enrichment. Oikos105(3),471–480 (2004a).
  • Vos M, Verschoor AM, Kooi BW, Wackers FL, De Angelis DL, Mooij WM. Inducible defences and trophic structure. Ecology85(10),2783–2794 (2004).
  • Van der Stap I, Vos M, Verschoor AM, Helmsing NR Mooij WM. Induced defenses in herbivores and plants differentially modulate a trophic cascade. Ecology88(10),2474–2481 (2007).
  • Van der Stap I, Vos M, Tollrian R, Mooij WM. Inducible defense, competition and shared predation in planktonic food chains. Oecologia157(4),697–705 (2008).
  • Fiałkowska E, Pajdak-Stos A. Inducible defense against a ciliate grazer P. dubius in two strains of Phormidium (cyanobacteria). Proc. Biol. Sci.264(1383),937–941(1997).
  • Fiałkowska E, Pajdak-Stos A. Dependence of cyanobacteria defense mode on grazer pressure. Aquat. Microb. Ecol.27,149–157 (2002).
  • Pajdak-Stos A, Fiałkowska E, Fyda J. Phormidium autumnale (cyanobacteria) defense against three ciliate grazer species. Aquat. Microb. Ecol.23,237–244 (2001).
  • Jang MH, Jung JM, Takamura N. Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemical concentrations. Limnol. Oceanogr.52(4),1454–1466 (2007).
  • Jang MH, Ha K, Lucas MC, Joo GJ, Takamura N. Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquat. Toxicol.68(1),51–59 (2004).
  • Yang Z, Kong F, Shi X, Zhang M, Xing P, Cao H. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (Cyanobacteria) during flagellate grazing. J. Phycol.44(3),716–720 (2008).
  • Burkert U, Hyenstrand P, Drakare S, Blomqvist P. Effects of the mixotrophic flagellate Ochromonas sp. on colony formation in Microcystis aeruginosa. Aquat. Ecol.35(1),9–17 (2001).
  • Yang Z, Kong F, Shi X, Cao H. Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia563(1),225–230 (2006).
  • Altwegg R, Marchinko KB, Duquette SL, Anholt BR. Dynamics of an inducible defence in the protist Euplotes. Arch. Hydrobiol.160(4),431–446 (2004).
  • Wiackowski K, Staronska A. The effect of predator and prey density on the induced defence of a ciliate. Funct. Ecol.13(1),59–65 (1999).
  • Abed RMM. Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int. Biodeterior. Biodegrad.64(1),58–64(2010).
  • Borisova YV, Nogina TM. Bacteria of the genus Rhodococcus accompanying green algae in nature and under conditions of laboratory cultivation. Hydrobiol. J.36(4),34–43 (2000).
  • Mukherji S, Chavan A. Treatment of aqueous effluents containing non-aqueous phase liquids in rotating biological contactor with algal bacterial biofilm. Chem. Eng. J.200–202,459–470 (2012).
  • Prasanna R, Pattnayak S, Sugitha TCK, Nain L, Saxena AK. Development of cyanobacterium based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiol.56(1),49–58 (2011).
  • Prasanna R, Ratha SK, Rojas C, Bruns MA. Algal diversity in flowing waters at an acidic mine drainage ‘barrens’ in central Pennsylvania, USA. Folia Microbiol.56(6),491–496 (2011).
  • Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol.14(9),389–397 (2006).
  • Ye L, Zhang T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16s rDNA 454 pyrosequencing. Appl. Microbiol. Biotechnol.97(6),2681–2690 (2013).
  • Jiang X, Ma M, Li J, Lu A, Zhong Z. Bacterial diversity of active sludge in wastewater treatment plant. Earth Sci. Front.15(6),163–168 (2008).
  • Wu Q, Liu WT. Determination of virus abundance, diversity and distribution in a municipal wastewater treatment plant. Water Res.43(4),1101–1109 (2009).
  • Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res.40,2799–2815 (2006).
  • Zhu L, Wang Z, Shu Q et al. Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res.47,4294–4302 (2013a).
  • Martins J, Peixe L, Vasconcelos V. Cyanobacteria and bacteria co-occurrence in a wastewater treatment plant: absence of allelopathic effects. Water Sci. Technol.62(8),1954–1962 (2010).
  • Medina M, Neis U. Symbiotic algal bacterial wastewater treatment: effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Sci. Technol.55(11),165–171 (2007).
  • de Godos I, González C, Becares E, García-Encina PA, Muñoz R. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl. Microbiol. Biotechnol.82(1),187–194 (2009).
  • Zamora-Castro J, Paniagua-Michel J, Lezama-Cervantes C. A novel approach for bioremediation of a coastal marine wastewater effluent based on artificial microbial mats. Marine Biotechnol.10(2),181–189 (2008).
  • Su Y, Mennerich A, Urban B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal–bacterial culture. Water Res.45(11),3351–3358 (2011).
  • Silva-Benavides AM, Torzillo G. Nitrogen and phosphorous removal through laboratory batch cultures of microalgae Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J. Appl. Phycol.24(2),267–276 (2012).
  • Grobbelaar JU. Microalgal biomass production; challenges and realities. Photosynth. Res.106(1–2),135–144 (2010).
  • Grobbelaar JU. Microalgae mass culture; the constraints of scaling up. J. Appl. Phycol.24(3),315–318 (2012).
  • Singh M, Reynolds DL, Das KC. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour. Technol.102(23),10841–10848 (2011).
  • Cho S, Luong TT, Lee D, Oh Y, Lee T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour. Technol.102(18),8639–8645 (2011).
  • Wang L, Li YC, Chen P et al. Anaerobic digested dairy manure as nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol.101(8),2623–2628 (2010).
  • Kang CK, An JY, Park TH, Sim SJ. Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochem. Eng. J.31(3),234–238 (2006).
  • Mustafa EM, Phang SM, Chu WL. Use of an algal consortium of five algae in the treatment of landfill leachate using the high-rate algal pond system. J. Appl. Phycol.24(4),953–963 (2012).
  • Ryu B, Kim K, Kim J, Han J, Yang J. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour. Technol.129(1),351–359 (2013).
  • Cabanelas ITD, Ruiz J, Arbib Z et al. Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour. Technol.131,429–436 (2013).
  • Li Y, Chen Y, Chen P et al. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production Bioresour. Technol.102(8),5138–5144 (2011).
  • Min M, Wang L, Li Y et al. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl. Biochem. Biotechnol.165(1),123–137 (2011).
  • Frampton DMF, Gurney RH, Dunstan GA et al. Evaluation of growth, nutrient utilization and production of bioproducts by a wastewater-isolated microalga. Bioresour. Technol.130,261–268 (2013).
  • Wu LF, Chen PC, Huang AP, Lee CM. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour. Technol.113,14–18 (2012).
  • Zhou W, Li Y, Min M et al. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl. Energ.98,433–440 (2012).
  • Zhou W, Min M, Li Y et al. A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour. Technol.110,448–455 (2012).
  • Zhu LD, Takala J, Hiltunen E, Wang ZM. Recycling harvest water to cultivate Chlorella zofingiensis under nutrient limitation for biodiesel production. Bioresour. Technol.144,14–20 (2013).
  • Chinnasamy S, Bhatnagar A, Claxton R, Das KC. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour. Technol.101(17),6751–6760 (2010).
  • Mutanda T, Karthikeyan S, Bux F. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Appl. Biochem. Biotechnol.164(7),1126–1138 (2011).
  • Sydney EB, da Silva TE, Tokarski A, Novak AC, de Carvalho, Woiciecohwski AL. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energ.88(10),3291–3294 (2011).
  • Lehr F, Posten C. Closed photo-bioreactors as tools for biofuel production. Curr. Opin. Biotech.20(3),280–285 (2009).
  • Stockenreiter M, Graber AK, Haupt F, Stibor H. The effect of species diversity on lipid production by micro-algal communities. J. Appl. Phycol.24(1),45–54 (2012).
  • Rodolfi L, Zittelli GC, Bassi N et al. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng.102(1),100–112 (2009).
  • Mata TM, Martins, AA, Caetano, NS. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev.14,217–232 (2010).
  • Li YG, Xu L, Huang YM, Wang F, Guo C, Liu CZ. Microalgal biodiesel in China: opportunities and challenges. Appl. Energ.88,3432–3437 (2011).
  • Lee YK. Microalgal mass culture systems and methods: their limitations and potential. J. Appl. Phycol.13,307–315 (2001).
  • Kazamia E, Aldridge DC, Smith AG. Synthetic ecology- a way forward for sustainable algal biofuel production?. J. Biotechnol.162,163–169 (2012).
  • Smith VH, Sturm BSM, Denoyelles FJ, Billings SA. The ecology of algal biodiesel production. Trends Ecol. Evol.25(5),301–309 (2010).
  • Carpenter SR, Kitchell JF. The Trophic Cascade in Lakes. Cambridge University Press, Cambridge, UK (1993).
  • Ptacnik R, Solimini AG, Andersen T et al. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proc. Natl Acad. Sci. USA105(13),5134–5138 (2008).
  • Oswald WJ. The coming industry of controlled photosynthesis. Am. I. Publ. Health52(2),235–242 (1962).
  • Dodd J. Elements of pond design and construction. In: Microalgae Mass Culture. Richmond A (Ed.). CRC, Boca Raton, FL, USA, 265–283 (1986).
  • Craggs R, Sutherland D, Campbell H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J. Appl. Phycol.24(3),329–337 (2012).
  • Green FB, Lundquist TJ, Oswald WJ. Energetics of advanced integrated wastewater pond systems. Water Sci. Technol.31(12),9–20 (1995).
  • Green FB, Bernstone L, Lundquist TJ, Muir J, Tresan RB, Oswald WJ. Methane fermentation, submerged gas collection and the fate of carbon in advanced integrated wastewater pond systems. Water Sci. Tech.31(12),55–65 (1995).
  • Green FB. The Energetics of Advanced Integrated Wastewater Pond Systems. PhD Dissertation. Energy and Resources Group, University of California, CA, USA (1998).
  • Adey WH, Luckett C, Jenson K. Phosphorus removal from natural waters using controlled algal production. Restor. Ecol.1(1),29–39 (1993).
  • Craggs RJ, Adey WH, Jessup BK, Oswald WJ. A controlled stream mesocosm for tertiary treatment of sewage. Ecol. Eng.6(1–3),149–169 (1996).
  • Adey WH, Loveland K. Dynamic Aquaria: Building and Restoring Living Ecosystems. Academic Press, Elsevier (2007).
  • Mulbry W, Kondrad S, Pizarro C. Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour. Technol.99(17),8137–8142 (2008).
  • Park JBK, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol.102(1),35–42 (2011).
  • Schenk P, Thomas-Hall S, Stephens E et al. Second generation biofuels; high-efficiency microalgae for biodiesel production. Bioenerg. Res.1,20–43 (2008).
  • Lundquist T, Woertz I, Quinn N, Benemann J. A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, Berkeley, CA, USA (2010).
  • UN World Water Assessment Programme. United Nations World Water Assessment Programme. The World Water Development Report 1: Water for People, Water for Life. UNESCO, Paris, France (2003).
  • de-Bashan LE, Moreno M, Hernandez J-P, Bashan Y. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res.36(12),2941–2948 (2002).
  • Tamer E, Amin MA, Ossama ET, Bo M, Benoit G. Biological treatment of industrial wastes in a photobioreactor. Water Sci. Technol.53(11),117–125 (2006).
  • Perez-Garcia O, De-Bashan LE, Hernandez J-P, Bashan Y. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J. Phycol.46(4),800–812 (2010).
  • de Godos I, Vargas VA, Blanco S et al. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour. Technol.101(14),5150–5158 (2010).
  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour. Technol.102(23),10861–10867 (2011).
  • Mohan SV, Devi MP, Mohanakrishna G, Amarnath N, Babu ML, Sarma PN. Potential of mixed microalgae to harness biodiesel from ecological water-bodies with simultaneous treatment. Bioresour. Technol.102(2),1109–1117 (2011).
  • Woertz I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J. Environ. Eng.135(11),1115–1122 (2009).
  • Zhu L, Wang Z, Takala, J, Hiltunen E et al. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour. Technol.137,318–325 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.