363
Views
2
CrossRef citations to date
0
Altmetric
Review

Methods Used to Increase The Comprehensive Coverage of Urinary and Plasma Metabolomes by MS

, , &
Pages 981-997 | Received 24 Nov 2015, Accepted 11 Mar 2016, Published online: 15 Apr 2016

References

  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29 (11), 1181–1189 (1999).
  • Nicholson JK , LindonJC. Systems biology: metabonomics. Nature455 (7216), 1054–1056 (2008).
  • Sreekumar A , PoissonLM, RajendiranTMet al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature457 (7231), 910–914 (2009).
  • Xu J , ChenY, ZhangRet al. Global and targeted metabolomics of esophageal squamous cell carcinoma discovers potential diagnostic and therapeutic biomarkers. Mol. Cell. Proteomics12 (5), 1306–1318 (2013).
  • Patti GJ , YanesO, SiuzdakG. Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13 (4), 263–269 (2012).
  • Chen C , GonzalezFJ, IdleJR. LC–MS-based metabolomics in drug metabolism. Drug Metab. Rev. 39 (2–3), 581–597 (2007).
  • Clayton TA , LindonJC, CloarecOet al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature440 (7087), 1073–1077 (2006).
  • De Vos RC , MocoS, LommenA, KeurentjesJJ, BinoRJ, HallRD. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2 (4), 778–791 (2007).
  • Mujahid M , PrasunaML, SasikalaC, Ramana ChV. Integrated metabolomic and proteomic analysis reveals systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress. J. Proteome Res. 14 (2), 711–727 (2015).
  • Ceglarek U , LeichtleA, BrugelMet al. Challenges and developments in tandem mass spectrometry based clinical metabolomics. Mol. Cell. Endocrinol. 301 (1–2), 266–271 (2009).
  • Theodoridis GA , GikaHG, WantEJ, WilsonID. Liquid chromatography-mass spectrometry based global metabolite profiling: a review. Anal. Chim. Acta711, 7–16 (2012).
  • Chen Y , XuJ, ZhangRet al. Assessment of data pre-processing methods for LC–MS/MS-based metabolomics of uterine cervix cancer. Analyst138 (9), 2669–2677 (2013).
  • Zelena E , DunnWB, BroadhurstDet al. Development of a robust and repeatable UPLC–MS method for the long-term metabolomic study of human serum. Anal. Chem. 81 (4), 1357–1364 (2009).
  • Mangalam A , PoissonL, NemutluEet al. Profile of circulatory metabolites in a relapsing-remitting animal model of multiple sclerosis using global metabolomics. J. Clin. Cell. Immunol. 4, doi: 10.4172/2155-9899.1000150 (2013).
  • Kim B , MoonJY, ChoiMHet al. Global metabolomics and targeted steroid profiling reveal that rifampin, a strong human PXR activator, alters endogenous urinary steroid markers. J. Proteome Res. 12 (3), 1359–1368 (2013).
  • Liu Y , HongZ, TanGet al. NMR and LC/MS-based global metabolomics to identify serum biomarkers differentiating hepatocellular carcinoma from liver cirrhosis. Int. J. Cancer135 (3), 658–668 (2014).
  • Chalcraft KR , MccarryBE. Tandem LC columns for the simultaneous retention of polar and nonpolar molecules in comprehensive metabolomics analysis. J. Sep. Sci. 36 (21–22), 3478–3485 (2013).
  • Zhang T , WatsonDG, WangLet al. Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery. PLoS ONE8 (6), e65880 (2013).
  • An Z , ChenY, ZhangRet al. Integrated ionization approach for RRLC–MS/MS-based metabonomics: finding potential biomarkers for lung cancer. J. Proteome Res. 9 (8), 4071–4081 (2010).
  • Li F , PattersonAD, HoferCC, KrauszKW, GonzalezFJ, IdleJR. A comprehensive understanding of thioTEPA metabolism in the mouse using UPLC-ESI-QTOFMS-based metabolomics. Biochem. Pharmacol. 81 (8), 1043–1053 (2011).
  • Zou W , SheJ, TolstikovVV. A comprehensive workflow of mass spectrometry-based untargeted metabolomics in cancer metabolic biomarker discovery using human plasma and urine. Metabolites3 (3), 787–819 (2013).
  • D’agostino LA , LamKP, LeeR, Britz-MckibbinP. Comprehensive plasma thiol redox status determination for metabolomics. J. Proteome Res. 10 (2), 592–603 (2011).
  • Kumar BS , LeeYJ, YiHJ, ChungBC, JungBH. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach. Anal. Chim. Acta661 (1), 47–59 (2010).
  • Chetwynd AJ , Abdul-SadaA, HillEM. Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Anal. Chem. 87 (2), 1158–1165 (2015).
  • Bolten CJ , KieferP, LetisseF, PortaisJC, WittmannC. Sampling for metabolome analysis of microorganisms. Anal. Chem. 79 (10), 3843–3849 (2007).
  • Moco S . J. V. Metabolomics technologies and metabolite identification. Trends Analyt. Chem. 26 (9), 855–865 (2007).
  • Psychogios N , HauDD, PengJet al. The human serum metabolome. PLoS ONE6 (2), e16957 (2011).
  • Vuckovic D . Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 403 (6), 1523–1548 (2012).
  • Yin P , LehmannR, XuG. Effects of pre-analytical processes on blood samples used in metabolomics studies. Anal. Bioanal. Chem. 407 (17), 4879–4892 (2015).
  • Gika H , TheodoridisG. Sample preparation prior to the LC–MS-based metabolomics/metabonomics of blood-derived samples. Bioanalysis3 (14), 1647–1661 (2011).
  • Bruce SJ , TavazziI, ParisodV, RezziS, KochharS, GuyPA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal. Chem. 81 (9), 3285–3296 (2009).
  • Want EJ , O’mailleG, SmithCAet al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 78 (3), 743–752 (2006).
  • Xu J , TianY, ChenYet al. Plasma preparation method for metabolomic analysis based on rapid resolution liquid chromatography-mass spectrometry. Chinese J. Anal. Chem. 39 (12), 1793–1797 (2011).
  • Chen S , HoeneM, LiJet al. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J. Chromatogr. A1298, 9–16 (2013).
  • Fernández-Peralbo MA , Luque De CastroMD. Preparation of urine samples prior to targeted or untargeted metabolomics mass-spectrometry analysis. Trends Analyt. Chem. 41, 75–85 (2012).
  • Álvarez-Sánchez B , Priego-CapoteF, Luque De CastroMD. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. Trends Analyt. Chem. 29 (2), 111–119 (2010).
  • Tulipani S , LlorachR, Urpi-SardaM, Andres-LacuevaC. Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: when less is more. Anal. Chem. 85 (1), 341–348 (2013).
  • David A , Abdul-SadaA, LangeA, TylerCR, HillEM. A new approach for plasma (xeno)metabolomics based on solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionisation mass spectrometry. J. Chromatogr. A1365, 72–85 (2014).
  • Chetwynd AJ , Abdul-SadaA, HillEM. Solid-phase extraction and nanoflow liquid chromatography-nanoelectrospray ionization mass spectrometry for improved global urine metabolomics. Anal. Chem. 87 (2), 1158–1165 (2015).
  • Idborg H , ZamaniL, EdlundPO, Schuppe-KoistinenI, JacobssonSP. Metabolic fingerprinting of rat urine by LC/MS Part 1. Analysis by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 828 (1–2), 9–13 (2005).
  • Idborg H , ZamaniL, EdlundPO, Schuppe-KoistinenI, JacobssonSP. Metabolic fingerprinting of rat urine by LC/MS Part 2. Data pretreatment methods for handling of complex data. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 828 (1–2), 14–20 (2005).
  • Price KE , LunteCE, LariveCK. Development of tissue-targeted metabonomics. Part 1. Analytical considerations. J. Pharm. Biomed. Anal. 46 (4), 737–747 (2008).
  • Wibom C , SurowiecI, MorenLet al. Metabolomic patterns in glioblastoma and changes during radiotherapy: a clinical microdialysis study. J. Proteome Res. 9 (6), 2909–2919 (2010).
  • Hadrevi J , GhafouriB, SjorsAet al. Comparative metabolomics of muscle interstitium fluid in human trapezius myalgia: an in vivo microdialysis study. Eur. J. Appl. Physiol. 113 (12), 2977–2989 (2013).
  • Kalkhof S , ForsterY, SchmidtJet al. Proteomics and metabolomics for in situ monitoring of wound healing. BioMed Res. Int. 2014, 934848 (2014).
  • Vuckovic D , De LannoyI, GienBet al. In vivo solid-phase microextraction: capturing the elusive portion of metabolome. Angew. Chem. Int. Ed. Engl. 50 (23), 5344–5348 (2011).
  • Giorgi A , ManzoA, Nanayakkarawasam Masachchige Chandrika NanayakkaraN, GiupponiL, CocucciM, PanseriS. Effect of biotic and abiotic stresses on volatile emission of Achillea collina Becker ex Rchb. Nat. Prod. Res. 29 (18), 1695–1702 (2015).
  • Lord HL , GrantRP, WallesM, IncledonB, FahieB, PawliszynJB. Development and evaluation of a solid-phase microextraction probe for in vivo pharmacokinetic studies. Anal. Chem. 75 (19), 5103–5115 (2003).
  • Bessonneau V , BoyaciE, Maciazek-JurczykM, PawliszynJ. In vivo solid phase microextraction sampling of human saliva for non-invasive and on-site monitoring. Anal. Chim. Acta856, 35–45 (2015).
  • Ouyang G , VuckovicD, PawliszynJ. Nondestructive sampling of living systems using in vivo solid-phase microextraction. Chem. Rev. 111 (4), 2784–2814 (2011).
  • Vuckovic D , PawliszynJ. Systematic evaluation of solid-phase microextraction coatings for untargeted metabolomic profiling of biological fluids by liquid chromatography-mass spectrometry. Anal. Chem. 83 (6), 1944–1954 (2011).
  • Cudjoe E , BojkoB, De LannoyI, SaldiviaV, PawliszynJ. Solid-phase microextraction: a complementary in vivo sampling method to microdialysis. Angew. Chem. Int. Ed. Engl. 52 (46), 12124–12126 (2013).
  • Nordstrom A , O’mailleG, QinC, SiuzdakG. Nonlinear data alignment for UPLC–MS and HPLC–MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal. Chem. 78 (10), 3289–3295 (2006).
  • Jones DR , WuZ, ChauhanD, AndersonKC, PengJ. A nano ultra-performance liquid chromatography-high resolution mass spectrometry approach for global metabolomic profiling and case study on drug-resistant multiple myeloma. Anal. Chem. 86 (7), 3667–3675 (2014).
  • Tang DQ , ZouL, YinXX, OngCN. HILIC-MS for metabolomics: an attractive and complementary approach to RPLC–MS. Mass Spectrom. Rev. doi: 10.1002/mas.21445 (2014) ( Epub ahead of print).
  • Guo K , PengJ, ZhouR, LiL. Ion-pairing reversed-phase liquid chromatography fractionation in combination with isotope labeling reversed-phase liquid chromatography-mass spectrometry for comprehensive metabolome profiling. J. Chromatogr. A1218 (23), 3689–3694 (2011).
  • Rothwell JA , FillatreY, MartinJFet al. New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects. PLoS ONE9 (4), e93474 (2014).
  • Nordstrom A , WantE, NorthenT, LehtioJ, SiuzdakG. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal. Chem. 80 (2), 421–429 (2008).
  • Tian H , BaiJ, AnZet al. Plasma metabolome analysis by integrated ionization rapid-resolution liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 27 (18), 2071–2080 (2013).
  • Chetwynd AJ , DavidA, HillEM, Abdul-SadaA. Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome. J. Mass Spectrom. 49 (10), 1063–1069 (2014).
  • Peterson AC , BalloonAJ, WestphallMS, CoonJJ. Development of a GC/Quadrupole-Orbitrap mass spectrometer, part II: new approaches for discovery metabolomics. Anal. Chem. 86 (20), 10044–10051 (2014).
  • Peterson AC , HauschildJP, QuarmbySTet al. Development of a GC/Quadrupole-Orbitrap mass spectrometer, part I: design and characterization. Anal. Chem. 86 (20), 10036–10043 (2014).
  • Cordero C , KieflJ, SchieberleP, ReichenbachSE, BicchiC. Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges. Anal. Bioanal. Chem. 407 (1), 169–191 (2015).
  • T’kindt R , MorreelK, DeforceD, BoerjanW, Van BocxlaerJ. Joint GC–MS and LC–MS platforms for comprehensive plant metabolomics: repeatability and sample pre-treatment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877 (29), 3572–3580 (2009).
  • Ciborowski M , LipskaA, GodzienJet al. Combination of LC–MS- and GC–MS-based metabolomics to study the effect of ozonated autohemotherapy on human blood. J. Proteome Res. 11 (12), 6231–6241 (2012).
  • Robledo VR , SmythWF. Review of the CE–MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis35 (16), 2292–2308 (2014).
  • Kleparnik K . Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory. Electrophoresis36 (1), 159–178 (2015).
  • Ramautar R , SomsenGW, De JongGJ. CE–MS for metabolomics: developments and applications in the period 2012–2014. Electrophoresis36 (1), 212–224 (2015).
  • Ramautar R , De JongGJ. Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis6 (7), 1011–1026 (2014).
  • Naz S , GarciaA, BarbasC. Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Anal. Chem. 85 (22), 10941–10948 (2013).
  • Tulipani S , Mora-CubillosX, JaureguiOet al. New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics: the not-so-simple process of method performance evaluation. Anal. Chem. 87 (5), 2639–2647 (2015).
  • Zuniga A , LiL. Ultra-high performance liquid chromatography tandem mass spectrometry for comprehensive analysis of urinary acylcarnitines. Anal. Chim. Acta689 (1), 77–84 (2011).
  • Peng J , LiL. Liquid-liquid extraction combined with differential isotope dimethylaminophenacyl labeling for improved metabolomic profiling of organic acids. Anal. Chim. Acta803, 97–105 (2013).
  • Lewis-Stanislaus AE , LiL. A method for comprehensive analysis of urinary acylglycines by using ultra-performance liquid chromatography quadrupole linear ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 21 (12), 2105–2116 (2010).
  • Koal T , SchmiedererD, Pham-TuanH, RohringC, RauhM. Standardized LC–MS/MS based steroid hormone profile-analysis. J. Steroid Biochem. Mol. Biol. 129 (3–5), 129–138 (2012).
  • Jantti SE , TammimakiA, RaattamaaH, PiepponenP, KostiainenR, KetolaRA. Determination of steroids and their intact glucuronide conjugates in mouse brain by capillary liquid chromatography-tandem mass spectrometry. Anal. Chem. 82 (8), 3168–3175 (2010).
  • Xu X , RomanJM, IssaqHJ, KeeferLK, VeenstraTD, ZieglerRG. Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal. Chem. 79 (20), 7813–7821 (2007).
  • Guo T , TaylorRL, SinghRJ, SoldinSJ. Simultaneous determination of 12 steroids by isotope dilution liquid chromatography-photospray ionization tandem mass spectrometry. Clin. Chim. Acta372 (1–2), 76–82 (2006).
  • Dai W , HuangQ, YinPet al. Comprehensive and highly sensitive urinary steroid hormone profiling method based on stable isotope-labeling liquid chromatography-mass spectrometry. Anal. Chem. 84 (23), 10245–10251 (2012).
  • Qu F , WuCS, HouJF, JinY, ZhangJL. Sphingolipids as new biomarkers for assessment of delayed-type hypersensitivity and response to triptolide. PLoS ONE7 (12), e52454 (2012).
  • Sullards MC , AllegoodJC, KellySet al. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: “inside-out” sphingolipidomics. Methods Enzymol. 432, 83–115 (2007).
  • Merrill AH Jr , SullardsMC, AllegoodJC, KellyS, WangE. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods36 (2), 207–224 (2005).
  • Klepacki J , KlawitterJ, KlawitterJ, ThurmanJM, ChristiansU. A high-performance liquid chromatography-tandem mass spectrometry-based targeted metabolomics kidney dysfunction marker panel in human urine. Clin. Chim. Acta446, 43–53 (2015).
  • Wei R , LiG, SeymourAB. High-throughput and multiplexed LC/MS/MRM method for targeted metabolomics. Anal. Chem. 82 (13), 5527–5533 (2010).
  • Huang J , SunJ, ChenYet al. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry: a case study for breast cancer. Anal. Chim. Acta711, 60–68 (2012).
  • Ostermann AI , WillenbergI, WeylandtKH, SchebbNH. Development of an online-SPE–LC–MS/MS method for 26 hydroxylated polyunsaturated fatty acids as rapid targeted metabolomics approach for the LOX, CYPs, and autoxidation pathways of the arachidonic acid cascade. Chromatographia78 (5–6), 415–428 (2015).
  • Peng J , GuoK, XiaJet al. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer’s disease. J. Proteome Res. 13 (10), 4457–4469 (2014).
  • Han J , LiuY, WangR, YangJ, LingV, BorchersCH. Metabolic profiling of bile acids in human and mouse blood by LC–MS/MS in combination with phospholipid-depletion solid-phase extraction. Anal. Chem. 87 (2), 1127–1136 (2015).
  • Han J , LinK, SequeiraC, BorchersCH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta854, 86–94 (2015).
  • Klavins K , DrexlerH, HannS, KoellenspergerG. Quantitative metabolite profiling utilizing parallel column analysis for simultaneous reversed-phase and hydrophilic interaction liquid chromatography separations combined with tandem mass spectrometry. Anal. Chem. 86 (9), 4145–4150 (2014).
  • Patterson AD , MaurhoferO, BeyogluDet al. Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 71 (21), 6590–6600 (2011).
  • Hirayama A , KamiK, SugimotoMet al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 69 (11), 4918–4925 (2009).
  • Ristagno G , FriesM, BrunelliLet al. Early kynurenine pathway activation following cardiac arrest in rats, pigs, and humans. Resuscitation84 (11), 1604–1610 (2013).
  • Gertsman I , GangoitiJA, BarshopBA. Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics10 (2), 312–323 (2014).
  • Peng J , ChenYT, ChenCL, LiL. Development of a universal metabolome-standard method for long-term LC–MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal. Chem. 86 (13), 6540–6547 (2014).
  • Kamleh MA , EbbelsTM, SpagouK, MassonP, WantEJ. Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies. Anal. Chem. 84 (6), 2670–2677 (2012).
  • Sysi-Aho M , KatajamaaM, YetukuriL, OresicM. Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics8, 93 (2007).
  • Van Der Kloet FM , BobeldijkI, VerheijER, JellemaRH. Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. J. Proteome Res. 8 (11), 5132–5141 (2009).
  • Smilde AK , Van Der WerfMJ, BijlsmaS, Van Der Werff-Van Der VatBJ, JellemaRH. Fusion of mass spectrometry-based metabolomics data. Anal. Chem. 77 (20), 6729–6736 (2005).
  • Draisma HH , ReijmersTH, Van Der KloetFet al. Equating, or correction for between-block effects with application to body fluid LC–MS and NMR metabolomics data sets. Anal. Chem. 82 (3), 1039–1046 (2010).
  • Wang SY , KuoCH, TsengYJ. Batch Normalizer: a fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Anal. Chem. 85 (2), 1037–1046 (2013).
  • Dunn WB , WilsonID, NichollsAW, BroadhurstD. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis4 (18), 2249–2264 (2012).
  • Gika HG , TheodoridisGA, EarllM, WilsonID. A QC approach to the determination of day-to-day reproducibility and robustness of LC–MS methods for global metabolite profiling in metabonomics/metabolomics. Bioanalysis4 (18), 2239–2247 (2012).
  • Gika HG , TheodoridisGA, WingateJE, WilsonID. Within-day reproducibility of an HPLC–MS-based method for metabonomic analysis: application to human urine. J. Proteome Res. 6 (8), 3291–3303 (2007).
  • He J , TangF, LuoZet al. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application. Rapid Commun. Mass Spectrom. 25 (7), 843–850 (2011).
  • Luo Z , HeJ, ChenYet al. Air flow-assisted ionization imaging mass spectrometry method for easy whole-body molecular imaging under ambient conditions. Anal. Chem. 85 (5), 2977–2982 (2013).
  • Li T , HeJ, MaoXet al. In situ biomarker discovery and label-free molecular histopathological diagnosis of lung cancer by ambient mass spectrometry imaging. Sci. Rep. 5, 14089 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.